Heterogeneous-attributes enhancement deep framework for network embedding
Lisheng QIAO , Fan ZHANG , Xiaohui HUANG , Kai LI , Enhong CHEN
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156616
Heterogeneous-attributes enhancement deep framework for network embedding
Network embedding, which targets at learning the vector representation of vertices, has become a crucial issue in network analysis. However, considering the complex structures and heterogeneous attributes in real-world networks, existing methods may fail to handle the inconsistencies between the structure topology and attribute proximity. Thus, more comprehensive techniques are urgently required to capture the highly non-linear network structure and solve the existing inconsistencies with retaining more information. To that end, in this paper, we propose a heterogeneous-attributes enhancement deep framework (HEDF), which could better capture the non-linear structure and associated information in a deep learningway, and effectively combine the structure information of multi-views by the combining layer. Along this line, the inconsistencies will be handled to some extent and more structure information will be preserved through a semi-supervised mode. The extensive validations on several real-world datasets show that our model could outperform the baselines, especially for the sparse and inconsistent situation with less training data.
network embedding / heterogeneous-attributes / deep framework / inconsistent
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
Higher Education Press
/
| 〈 |
|
〉 |