String kernels construction and fusion: a survey with bioinformatics application

Ren QI, Fei GUO, Quan ZOU

PDF(1997 KB)
PDF(1997 KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (6) : 166904. DOI: 10.1007/s11704-021-1118-x
Interdisciplinary
REVIEW ARTICLE

String kernels construction and fusion: a survey with bioinformatics application

Author information +
History +

Abstract

The kernel method, especially the kernel-fusion method, is widely used in social networks, computer vision, bioinformatics, and other applications. It deals effectively with nonlinear classification problems, which can map linearly inseparable biological sequence data from low to high-dimensional space for more accurate differentiation, enabling the use of kernel methods to predict the structure and function of sequences. Therefore, the kernel method is significant in the solution of bioinformatics problems. Various kernels applied in bioinformatics are explained clearly, which can help readers to select proper kernels to distinguish tasks. Mass biological sequence data occur in practical applications. Research of the use of machine learning methods to obtain knowledge, and how to explore the structure and function of biological methods for theoretical prediction, have always been emphasized in bioinformatics. The kernel method has gradually become an important learning algorithm that is widely used in gene expression and biological sequence prediction. This review focuses on the requirements of classification tasks of biological sequence data. It studies kernel methods and optimization algorithms, including methods of constructing kernel matrices based on the characteristics of biological sequences and kernel fusion methods existing in a multiple kernel learning framework.

Graphical abstract

Keywords

multiple kernel learning / kernel fusion methods / support vector machines / biological sequences analysis

Cite this article

Download citation ▾
Ren QI, Fei GUO, Quan ZOU. String kernels construction and fusion: a survey with bioinformatics application. Front. Comput. Sci., 2022, 16(6): 166904 https://doi.org/10.1007/s11704-021-1118-x

References

[1]
Vapnik V N . An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10( 5): 988– 999
[2]
Schölkopf B , Smola A , Müller K R . Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10( 5): 1299– 1319
[3]
Nello C, John S T. An introduction to support vector machines and other kernel-based learning methods. Cambridge university press, 2000
[4]
Mercer J. XVI . Functions of positive and negative type, and their connection the theory of integral equations. Philosophical Transactions of the Royal Society of London, 1909, 209( 441−458): 415– 446
[5]
Vapnik V. Statistical learning theory. New York: Wiley, 1998
[6]
Mika S, Ratsch G, Weston J, Scholkopf B, Mullers K R. Fisher discriminant analysis with kernels. In: Proceedings of the 1999 IEEE Signal Processing Society Workshop. 1999, 41− 48
[7]
Cristianini N, John S T, Elisseeff A, Kandola J S. On kernel-target alignment. Advances in Neural Information Processing Systems, 2002, 367− 373
[8]
Song L , Kolar M , Xing E P . KELLER: estimating time-varying interactions between genes. Bioinformatics, 2009, 25( 12): i128– i136
[9]
Song L , Bedo J , Borgwardt K M , Gretton A , Smola A . Gene selection via the BAHSIC family of algorithms. Bioinformatics, 2007, 23( 13): i490– i498
[10]
Kato T , Tsuda K , Asai K . Selective integration of multiple biological data for supervised network inference. Bioinformatics, 2005, 21( 10): 2488– 2495
[11]
Donini M, Monteiro J M, Pontil M, Shawe-Taylor J, Mourao-Miranda J. A multimodal multiple kernel learning approach to Alzheimer’s disease detection. In: Proceedings of the 26th IEEE International workshop on Machine Learning for Signal Processing. 2016, 1− 6
[12]
Gu Y , Liu T , Jia X , Benediktsson J A , Chanussot J . Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54( 6): 3235– 3247
[13]
Han L, Yue Z, Guo X. Image segmentation implementation based on FPGA and SVM. In: Proceedings of the 3rd International Conference on Control, Automation and Robotics. 2017, 405− 409
[14]
Leslie C S , Eskin E , Cohen A , Weston J , Noble W S . Mismatch string kernels for discriminative protein classification. Bioinformatics, 2004, 20( 4): 467– 476
[15]
Tsuda K , Noble W S . Learning kernels from biological networks by maximizing entropy. Bioinformatics, 2004, 20( suppl_1): i326– i333
[16]
Chou K C . Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Current Proteomics, 2009, 6( 4): 262– 274
[17]
Swamidass S J , Chen J , Bruand J , Phung P , Ralaivola L , Baldi P . Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 2005, 21( suppl_1): i359– i368
[18]
Asa B H , Noble W S . Kernel methods for predicting protein–protein interactions. Bioinformatics, 2005, 21( suppl_1): i38– i46
[19]
Lanckriet G R , Cristianini N , Bartlett P , Ghaoui L E , Jordan M I . Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 2004, 5( Jan): 27– 72
[20]
Lanckriet G R , Tijl D B , Cristianini N , Jordan M I , Noble W S . A statistical framework for genomic data fusion. Bioinformatics, 2004, 20( 16): 2626– 2635
[21]
Lanckriet G R, Deng M, Cristianini N, Jordan M I, Noble W S. Kernel-based data fusion and its application to protein function prediction in yeast. Biocomputing: World Scientific, 2003
[22]
Bach F R, Thibaux R, Jordan M I. Computing regularization paths for learning multiple kernels. Advances in Neural Information Processing Systems, 2005, 73− 80
[23]
Sonnenburg S, Rätsch G, Schäfer C. A general and efficient multiple kernel learning algorithm. Advances in Neural Information Processing Systems, 2006, 1273− 1280
[24]
Jebara T. Multi-task feature and kernel selection for SVMs. In: Proceedings of the 21th International Conference on Machine Learning. 2004, 55
[25]
Lewis D P , Jebara T , Noble W S . Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics, 2006, 22( 22): 2753– 2760
[26]
Rätsch G , Sonnenburg S , Schäfer C . Learning interpretable SVMs for biological sequence classification. BMC Bioinformatics, 2006, 7( 1): S9–
[27]
Varma M, Babu B R. More generality in efficient multiple kernel learning. In: Proceedings of the 26th Annual International Conference on Machine Learning. 2009, 1065− 1072
[28]
Jain A, Vishwanathan S V, Varma M. SPF-GMKL: generalized multiple kernel learning with a million kernels. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 750− 758
[29]
Wu P , Hoi S C , Zhao P , Miao C , Liu Z-Y . Online multi-modal distance metric learning with application to image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2016, 28( 2): 454– 467
[30]
Borgwardt K M, Ong C S, Schönauer S, Vishwanathan S, Smola A J, Kriegel H-P. Protein function prediction via graph kernels. Bioinformatics, 2005, 21(suppl_1), i47− i56
[31]
Zien A, Ong C S. An automated combination of sequence motif kernels for predicting protein subcellular localization, 2006
[32]
Damoulas T , Girolami M A . Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics, 2008, 24( 10): 1264– 1270
[33]
Vert J P , Qiu J , Noble W S . A new pairwise kernel for biological network inference with support vector machines. BMC Bioinformatics, 2007, 8( 10): 1– 10
[34]
Vapnik V. The nature of statistical learning theory. Springer science & business media, 2013
[35]
Aronszajn N . Theory of reproducing kernels. Transactions of the American Mathematical Society, 1950, 68( 3): 337– 404
[36]
Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers. In: Proceedings of the 5th annual workshop on Computational learning theory. 1992, 144− 152
[37]
Boyd S, Vandenberghe L. Convex optimization. Cambridge university press, 2004
[38]
Leslie C, Eskin E, Noble W S. The spectrum kernel: A string kernel for SVM protein classification. Biocomputing 2002: World Scientific, 2001
[39]
Saigo H , Vert J P , Ueda N , Akutsu T . Protein homology detection using string alignment kernels. Bioinformatics, 2004, 20( 11): 1682– 1689
[40]
Rätsch G, Sonnenburg S. Accurate splice site prediction for caenorhabditis elegans. Computational Molecular Biology, 2004, 277– 298
[41]
Asa B H , Brutlag D . Remote homology detection: a motif based approach. Bioinformatics, 2003, 19( suppl_1): i26– i33
[42]
Nevill M , Craig G , Wu T D , Brutlag D L . Highly specific protein sequence motifs for genome analysis. In: Proceedings of the National Academy of Sciences, 1998, 95( 11): 5865– 5871
[43]
Huang J Y , Brutlag D L . The EMOTIF database. Nucleic Acids Research, 2001, 29( 1): 202– 204
[44]
Kuang R , WANG K , Wang K , Siddiqi M , Freund Y , Leslie C . Profile-based string kernels for remote homology detection and motif extraction. Journal of Bioinformatics and Computational Biology, 2005, 3( 3): 527– 550
[45]
Rätsch G , Sonnenburg S , Srinivasan J , Witte H , Müller K R , Sommer R J , Schölkopf B . Improving the Caenorhabditis elegans genome annotation using machine learning. PLoS Computational Biology, 2007, 3( 2): e20–
[46]
Schweikert G , Zien A , Zeller G , Behr J , Dieterich C , Ong C S , Philips P , De Bona F , Hartmann L , Bohlen A . mGene: accurate SVM-based gene finding with an application to nematode genomes. Genome Research, 2009, 19( 11): 2133– 2143
[47]
Jacob L , Vert J P . Efficient peptide–MHC-I binding prediction for alleles with few known binders. Bioinformatics, 2007, 24( 3): 358– 366
[48]
Röttig M , Rausch C , Kohlbacher O . Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families. PLoS Computational Biology, 2010, 6( 1): e1000636–
[49]
Teramoto R , Aoki M , Kimura T , Kanaoka M . Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS letters, 2005, 579( 13): 2878– 2882
[50]
Kuksa P, Qi Y, Bai B, Collobert R, Weston J, Pavlovic V, Ning X. Semi-supervised abstraction-augmented string kernel for multi-level bio-relation extraction. Joint European Conference on Machine Learning and Knowledge Discovery in Databases: Springer, 2010, 128− 144
[51]
Leslie C, Eskin E, Weston J, Noble W S. Mismatch string kernels for SVM protein classification. Advances in Neural Information Processing Systems, 2003, 1441− 1448
[52]
Weston J , Leslie C , Ie E , Zhou D , Elisseeff A , Noble W S . Semi-supervised protein classification using cluster kernels. Bioinformatics, 2005, 21( 15): 3241– 3247
[53]
Kuksa P, Huang P H, Pavlovic V. Scalable algorithms for string kernels with inexact matching. Advances in Neural Information Processing Systems, 2008, 21, 881− 888
[54]
Leslie C, Kuang R, Bennett K. Fast string kernels using inexact matching for protein sequences. Journal of Machine Learning Research, 2004, 5(9)
[55]
Cichonska A , Pahikkala T , Szedmak S , Julkunen H , Airola A , Heinonen M , Aittokallio T , Rousu J . Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics, 2018, 34( 13): i509– i518
[56]
Liao L, Noble W S. Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In: Proceedings of the Sixth Annual International Conference on Computational Biology. 2002, 225− 232
[57]
Filatov G , Bauwens B , Attila K F . LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification. Bioinformatics, 2018, 34( 19): 3281– 3288
[58]
Smith T F , Waterman M S . Identification of common molecular subsequences. Journal of Molecular Biology, 1981, 147( 1): 195– 197
[59]
Altschul S F , Gish W , Miller W , Myers E W , Lipman D J . Basic local alignment search tool. Journal of Molecular Biology, 1990, 215( 3): 403– 410
[60]
Vert J P, Saigo H, Akutsu T. Local alignment kernels for biological sequences. Kernel Methods in Computational Biology, 2004, 131− 154
[61]
Jaakkola T, Diekhans M, Haussler D. A discriminative framework for detecting remote protein homologies. Journal of Computational Biology, 2000, 7(1−2), 95− 114
[62]
Gönen M , Alpaydın E . Multiple kernel learning algorithms. Journal of Machine Learning Research, 2011, 12 : 2211– 2268
[63]
Bucak S S , Jin R , Jain A K . Multiple kernel learning for visual object recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36( 7): 1354– 1369
[64]
Bach F R, Lanckriet G R, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm. In: Proceedings of the 21th International Conference on Machine Learning. 2004, 6
[65]
Sonnenburg S , Rätsch G , Schäfer C , Schölkopf B . Large scale multiple kernel learning. Journal of Machine Learning Research, 2006, 7 : 1531– 1565
[66]
Papadopoulos A . Metric spaces, convexity and nonpositive curvature. European Mathematical Society, 2005,
[67]
Rapcsak T . Geodesic convexity in nonlinear optimization. Journal of Optimization Theory and Applications, 1991, 69( 1): 169– 183
[68]
Zakeri P , Jeuris B , Vandebril R , Moreau Y . Protein fold recognition using geometric kernel data fusion. Bioinformatics, 2014, 30( 13): 1850– 1857
[69]
Jeuris B , Vandebril R , Vandereycken B . A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electronic Transactions on Numerical Analysis, 2012, 39( ARTICLE): 379– 402
[70]
Wang Y C , Zhang C H , Deng N Y , Wang Y . Kernel-based data fusion improves the drug–protein interaction prediction. Computational Biology and Chemistry, 2011, 35( 6): 353– 362
[71]
Yu G , Rangwala H , Domeniconi C , Zhang G , Zhang Z . Protein Function Prediction by Integrating Multiple Kernels. In: Proceedings of Twenty-Third International Joint Conference on Artificial Intelligence, 2013,
[72]
Yu G , Rangwala H , Domeniconi C , Zhang G , Zhang Z . Predicting Protein Function using Multiple Kernels. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12( 1): 219– 233
[73]
Yu G , Fu G , Wang J , Zhu H . Predicting Protein Function via Semantic Integration of Multiple Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13( 2): 220– 232
[74]
Cortes Corinna M M , Afshin Rostamizadeh . Learning non-linear combinations of kernels. Advances in neural information processing systems, 2009,
[75]
Kloft M, Brefeld U, Sonnenburg S, Zien A. Non-sparse regularization and efficient training with multiple kernels. 2010, arXiv preprint arXiv: 1003.0079 2010, 186: 189−190
[76]
Eli M, Kisilev P. Nuc-mkl: A convex approach to non linear multiple kernel learning. Artificial Intelligence and Statistics, 2016, 610− 619
[77]
Wilson C M , Li K , Yu X , Kuan P F , Wang X . Multiple-kernel learning for genomic data mining and prediction. BMC Bioinformatics, 2019, 20( 1): 1– 7
[78]
Sakakibara Y , Popendorf K , Ogawa N , Asai K , Sato K . Stem kernels for RNA sequence analyses. Journal of Bioinformatics and Computational Biology, 2007, 5( 05): 1103– 1122
[79]
Navarin N , Costa F . An efficient graph kernel method for non-coding RNA functional prediction. Bioinformatics, 2017, 33( 17): 2642– 2650
[80]
Brayet J , Zehraoui F , Laurence J L , Israeli D , Tahi F . Towards a piRNA prediction using multiple kernel fusion and support vector machine. Bioinformatics, 2014, 30( 17): i364– i370
[81]
Chang C C , Lin C J . LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2( 3): 27–
[82]
Costello J C , Heiser L M , Georgii E , Gönen M , Menden M P , Wang N J , Bansal M , Hintsanen P , Khan S A , Mpindi J P . A community effort to assess and improve drug sensitivity prediction algorithms. Nature Biotechnology, 2014, 32( 12): 1202–
[83]
Cichonska A , Ravikumar B , Parri E , Timonen S , Pahikkala T , Airola A , Wennerberg K , Rousu J , Aittokallio T . Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors. PLoS Computational Biology, 2017, 13( 8): e1005678–
[84]
Gönen M . Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 2012, 28( 18): 2304– 2310
[85]
Gönen M, Khan S, Kaski S. Kernelized Bayesian matrix factorization. International Conference on Machine Learning, 2013, 864− 872
[86]
Nascimento A C , Prudêncio R B , Costa I G . A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics, 2016, 17( 1): 46–
[87]
Kloft M, Brefeld U, Laskov P, Müller K-R, Zien A, Sonnenburg S. Efficient and accurate lp-norm multiple kernel learning. Advances in Neural Information Processing Systems, 2009, 997− 1005
[88]
Sun Z, Ampornpunt N, Varma M, Vishwanathan S. Multiple kernel learning and the SMO algorithm. Advances in Neural Information Processing Systems, 2010, 2361− 2369
[89]
Rakotomamonjy A , Bach F R , Canu S , Grandvalet Y . SimpleMKL. Journal of Machine Learning Research, 2008, 9 : 2491– 2521
[90]
Bucak S, Jin R, Jain A. Multi-label multiple kernel learning by stochastic approximation: Application to visual object recognition. Advances in Neural Information Processing Systems, 2010, 325− 333
[91]
Gönen M, Alpaydin E. Localized multiple kernel learning. In: Proceedings of the 25th International Conference on Machine Learning. 2008, 352− 359
[92]
Mostafavi S , Morris Q . Fast integration of heterogeneous data sources for predict-ing gene function with limited annotation. Bioinformatics, 2010, 26( 14): 1759– 1765
[93]
Kong X , Ng M K , Zhou Z-H . Trans-ductive multi-label learning via label set propagation. IEEE Transactions on Knowledge and Data Engineering, 2013, 25( 3): 704– 719
[94]
Tang L, Chen J, Ye J. On multiplekernel learning with multiple labels. In: Proceedings of Twenty-First International Joint Conference on Artificial Intelligence. 2009, 1255– 1260
[95]
Bucak S , Jin R , Jain A . Multi-label multiple kernel learning by stochastic approximation:Application to visual object recognition. Advances in Neural Information Processing Systems, 2010, 24 : 325– 333

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 61922020, 61771331, 61902259).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1997 KB)

Accesses

Citations

Detail

Sections
Recommended

/