Defense against local model poisoning attacks to byzantine-robust federated learning

Shiwei LU, Ruihu LI, Xuan CHEN, Yuena MA

PDF(1073 KB)
PDF(1073 KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (6) : 166337. DOI: 10.1007/s11704-021-1067-4
Artificial Intelligence
LETTER

Defense against local model poisoning attacks to byzantine-robust federated learning

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Shiwei LU, Ruihu LI, Xuan CHEN, Yuena MA. Defense against local model poisoning attacks to byzantine-robust federated learning. Front. Comput. Sci., 2022, 16(6): 166337 https://doi.org/10.1007/s11704-021-1067-4

References

[1]
McMahan B, Moore E, Ramage D, Hampson S, Arcas B A. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR. 2017, 1273−1282
[2]
Kairouz P, McMahan B, Avent B, Bellet A, Bennis M, Bhagoji A N, Bonawitz K. Advances and open problems in federated learning. 2019, arXiv preprint arXiv: 2019.04977
[3]
Blanchard P, El Mhamdi E M, Guerraoui R, Stainer J. Machine learning with adversaries: Byzantine tolerant gradient descent. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 118–128
[4]
Yin D, Chen Y D, Kannan R, Bartlett P. Byzantine-robust distributed learning: towards optimal statistical rates. In: Proceedings of the 35th International Conference on Machine Learning. 2018, 2018−5659
[5]
Fang M H, Cao X Y, Jia J Y, Gong Z Q. Local model poisoning attacks to Byzantine-robust federated learning. In: Proceedings of the 29th Usenix Security Symposium. 2020
[6]
Li S, Cheng Y, Wang W, Liu Y, Chen T J. Learning to detect malicious clients for robust federated learning. 2020, arXiv preprint arXiv: 2020.00211
[7]
Zong B, Song Q, Min M R, Cheng W, Lumezanu C, Cho D, Chen H F. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: Proceedings of the 27th International Conference on Learning Representations. 2018

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grand Nos. 11901579, 11801564).

Supporting Information

The supporting information is available online at journal. hep. com. cn and link. springer. com.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1073 KB)

Accesses

Citations

Detail

Sections
Recommended

/