Defense against local model poisoning attacks to byzantine-robust federated learning

Shiwei LU , Ruihu LI , Xuan CHEN , Yuena MA

Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (6) : 166337

PDF (1073KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (6) : 166337 DOI: 10.1007/s11704-021-1067-4
Artificial Intelligence
LETTER

Defense against local model poisoning attacks to byzantine-robust federated learning

Author information +
History +
PDF (1073KB)

Graphical abstract

Cite this article

Download citation ▾
Shiwei LU, Ruihu LI, Xuan CHEN, Yuena MA. Defense against local model poisoning attacks to byzantine-robust federated learning. Front. Comput. Sci., 2022, 16(6): 166337 DOI:10.1007/s11704-021-1067-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McMahan B, Moore E, Ramage D, Hampson S, Arcas B A. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR. 2017, 1273−1282

[2]

Kairouz P, McMahan B, Avent B, Bellet A, Bennis M, Bhagoji A N, Bonawitz K. Advances and open problems in federated learning. 2019, arXiv preprint arXiv: 2019.04977

[3]

Blanchard P, El Mhamdi E M, Guerraoui R, Stainer J. Machine learning with adversaries: Byzantine tolerant gradient descent. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 118–128

[4]

Yin D, Chen Y D, Kannan R, Bartlett P. Byzantine-robust distributed learning: towards optimal statistical rates. In: Proceedings of the 35th International Conference on Machine Learning. 2018, 2018−5659

[5]

Fang M H, Cao X Y, Jia J Y, Gong Z Q. Local model poisoning attacks to Byzantine-robust federated learning. In: Proceedings of the 29th Usenix Security Symposium. 2020

[6]

Li S, Cheng Y, Wang W, Liu Y, Chen T J. Learning to detect malicious clients for robust federated learning. 2020, arXiv preprint arXiv: 2020.00211

[7]

Zong B, Song Q, Min M R, Cheng W, Lumezanu C, Cho D, Chen H F. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: Proceedings of the 27th International Conference on Learning Representations. 2018

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1073KB)

Supplementary files

Highlights

Supplementary materials

1824

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/