Heterogeneous information network embedding with incomplete multi-view fusion

Susu ZHENG, Weiwei YUAN, Donghai GUAN

PDF(3146 KB)
Front. Comput. Sci. All Journals
PDF(3146 KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (5) : 165611. DOI: 10.1007/s11704-021-1057-6
Information Systems
LETTER

Heterogeneous information network embedding with incomplete multi-view fusion

Author information +
History +

Graphical abstract

Cite this article

Download citation ▾
Susu ZHENG, Weiwei YUAN, Donghai GUAN. Heterogeneous information network embedding with incomplete multi-view fusion. Front. Comput. Sci., 2022, 16(5): 165611 https://doi.org/10.1007/s11704-021-1057-6
This is a preview of subscription content, contact us for subscripton.

References

[1]
Dong Y X, Chawla N V, Swami A. metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017, 135– 144
[2]
Zhao Z Y , Zhou H , Li C , Tang J , Zeng Q T . DeepEmLAN: deep embedding learning for attributed networks. Information Sciences, 2021, 543 : 382– 397
[3]
Yang D J, Wang S Z, Li C Z, Zhang X M, Li Z J. From properties to links: deep network embedding on incomplete graphs. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017, 367– 376
[4]
Zhao Z Y , Zhou H , Qi L , Chang L , Zhou M C . Inductive representation learning via CNN for partially-unseen attributed networks. IEEE Transactions on Network Science and Engineering, 2021, 8( 1): 695– 706
[5]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 6000−6010
[6]
Tang J, Qu M, Wang M Z, Zhang M, Yan J, Mei Q Z. LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 1067−1077
[7]
Winkler A M , Renaud O , Smith S M , Nichols T E . Permutation inference for canonical correlation analysis. NeuroImage, 2020, 220 : 117065–
[8]
Fu T Y, Lee W C, Lei Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017, 1797−1806
[9]
Zhang H M, Qiu L W, Yi L L, Song Y Q. Scalable multiplex network embedding. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018: 3082−3088

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities of China (NS2019056).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3146 KB)

Supplementary files

Highlights (131 KB)

1344

Accesses

2

Citations

1

Altmetric

Detail

Sections
Recommended

/