Heterogeneous information network embedding with incomplete multi-view fusion

Susu ZHENG , Weiwei YUAN , Donghai GUAN

Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (5) : 165611

PDF (3146KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (5) : 165611 DOI: 10.1007/s11704-021-1057-6
Information Systems
LETTER

Heterogeneous information network embedding with incomplete multi-view fusion

Author information +
History +
PDF (3146KB)

Graphical abstract

Cite this article

Download citation ▾
Susu ZHENG, Weiwei YUAN, Donghai GUAN. Heterogeneous information network embedding with incomplete multi-view fusion. Front. Comput. Sci., 2022, 16(5): 165611 DOI:10.1007/s11704-021-1057-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong Y X, Chawla N V, Swami A. metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017, 135– 144

[2]

Zhao Z Y , Zhou H , Li C , Tang J , Zeng Q T . DeepEmLAN: deep embedding learning for attributed networks. Information Sciences, 2021, 543 : 382– 397

[3]

Yang D J, Wang S Z, Li C Z, Zhang X M, Li Z J. From properties to links: deep network embedding on incomplete graphs. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017, 367– 376

[4]

Zhao Z Y , Zhou H , Qi L , Chang L , Zhou M C . Inductive representation learning via CNN for partially-unseen attributed networks. IEEE Transactions on Network Science and Engineering, 2021, 8( 1): 695– 706

[5]

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 6000−6010

[6]

Tang J, Qu M, Wang M Z, Zhang M, Yan J, Mei Q Z. LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 1067−1077

[7]

Winkler A M , Renaud O , Smith S M , Nichols T E . Permutation inference for canonical correlation analysis. NeuroImage, 2020, 220 : 117065–

[8]

Fu T Y, Lee W C, Lei Z. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017, 1797−1806

[9]

Zhang H M, Qiu L W, Yi L L, Song Y Q. Scalable multiplex network embedding. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018: 3082−3088

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3146KB)

Supplementary files

Highlights

1588

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/