Self-corrected unsupervised domain adaptation
Yunyun WANG , Chao WANG , Hui XUE , Songcan CHEN
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (5) : 165323
Self-corrected unsupervised domain adaptation
Unsupervised domain adaptation (UDA), which aims to use knowledge from a label-rich source domain to help learn unlabeled target domain, has recently attracted much attention. UDA methods mainly concentrate on source classification and distribution alignment between domains to expect the correct target prediction. While in this paper, we attempt to learn the target prediction end to end directly, and develop a Self-corrected unsupervised domain adaptation (SCUDA) method with probabilistic label correction. SCUDA adopts a probabilistic label corrector to learn and correct the target labels directly. Specifically, besides model parameters, those target pseudo-labels are also updated in learning and corrected by the anchor-variable, which preserves the class candidates for samples. Experiments on real datasets show the competitiveness of SCUDA.
unsupervised domain adaptation / adversarial Learning / deep neural network / pseudo-labels / label corrector
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014, 2672−2680 |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
LeCun Y, Matan O, Boser B, Henderson D, Howard R E, Hubbard W, Jacket LD, Baird H S. Handwritten zip code recognition with multilayer networks. In: Proceedings of the 10th International Conference on Pattern Recognition. 1990, 35−40 |
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
Higher Education Press
/
| 〈 |
|
〉 |