Exploiting comments information to improve legal public opinion news abstractive summarization
Yuxin HUANG , Zhengtao YU , Yan XIANG , Zhiqiang YU , Junjun GUO
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (6) : 166333
Exploiting comments information to improve legal public opinion news abstractive summarization
Automatically generating a brief summary for legal-related public opinion news (LPO-news, which contains legal words or phrases) plays an important role in rapid and effective public opinion disposal. For LPO-news, the critical case elements which are significant parts of the summary may be mentioned several times in the reader comments. Consequently, we investigate the task of comment-aware abstractive text summarization for LPO-news, which can generate salient summary by learning pivotal case elements from the reader comments. In this paper, we present a hierarchical comment-aware encoder (HCAE), which contains four components: 1) a traditional sequenceto-sequence framework as our baseline; 2) a selective denoising module to filter the noisy of comments and distinguish the case elements; 3) a merge module by coupling the source article and comments to yield comment-aware context representation; 4) a recoding module to capture the interaction among the source article words conditioned on the comments. Extensive experiments are conducted on a large dataset of legal public opinion news collected from micro-blog, and results show that the proposed model outperforms several existing state-of-the-art baseline models under the ROUGE metrics.
legal public opinion news / abstractive summarization / comment / comment-aware context / case elements / bi-directional attention
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
Hu M S, Sun A X, Lim E P. Comments-oriented document summarization: understanding documents with readers’ feedback. In: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval. 2008, 291–298 |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
Higher Education Press
/
| 〈 |
|
〉 |