Flexibility and rigidity index for chromosome packing, flexibility and dynamics analysis
Jiajie PENG, Jinjin YANG, D Vijay ANAND, Xuequn SHANG, Kelin XIA
Flexibility and rigidity index for chromosome packing, flexibility and dynamics analysis
The packing of genomic DNA from double helix into highly-order hierarchical assemblies has a great impact on chromosome flexibility, dynamics and functions. The open and accessible regions of chromosomes are primary binding positions for regulatory elements and are crucial to nuclear processes and biological functions. Motivated by the success of flexibility-rigidity index (FRI) in biomolecular flexibility analysis and drug design, we propose an FRI-based model for quantitatively characterizing chromosome flexibility. Based on Hi-C data, a flexibility index for each locus can be evaluated. Physically, flexibility is tightly related to packing density. Highly compacted regions are usually more rigid, while loosely packed regions are more flexible. Indeed, a strong correlation is found between our flexibility index and DNase and ATAC values, which are measurements for chromosome accessibility. In addition, the genome regions with higher chromosome flexibility have a higher chance to be bound by transcription factors. Recently, the Gaussian network model (GNM) is applied to analyze the chromosome accessibility and a mobility profile has been proposed to characterize chromosome flexibility. Compared with GNM, our FRI is slightly more accurate (1% to 2% increase) and significantly more efficient in both computational time and costs. For a 5Kb resolution Hi-C data, the flexibility evaluation process only takes FRI a few minutes on a single-core processor. In contrast, GNM requires 1.5 hours on 10 CPUs. Moreover, interchromosome interactions can be easily combined into the flexibility evaluation, thus further enhancing the accuracy of our FRI. In contrast, the consideration of interchromosome information into GNM will significantly increase the size of its Laplacian (or Kirchhoff) matrix, thus becoming computationally extremely challenging for the current GNM. The software and supplementary document are available at https://github.com/jiajiepeng/FRI_chrFle.
flexibility-rigidity index / 3D genome / chromosome flexibility
[1] |
Schmitt A D , Hu M , Ren B . Genome-wide mapping and analysis of chromosome architecture. Nature Reviews Molecular Cell Biology, 2016, 17( 12): 743–
|
[2] |
Dekker J . The 4D nucleome project. Nature, 2017, 549( 7671): 219–
|
[3] |
Dekker J , Rippe K , Dekker M , Kleckner N . Capturing chromosome conformation. Science, 2002, 295( 5558): 1306– 1311
|
[4] |
Simonis M , Klous P , Splinter E , Moshkin Y , Willemsen R , De Wit E , Van Steensel B , De Laat W . Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics, 2006, 38( 11): 1348– 1354
|
[5] |
Zhao Z H . Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra-and interchromosomal interactions. Nature Genetics, 2006, 38( 11): 1341– 1347
|
[6] |
Fullwood M J . An oestrogen-receptor-α-bound human chromatin interactome. Nature, 2009, 462( 7269): 58– 64
|
[7] |
de Wit E , de Laat W . A decade of 3C technologies: insights into nuclear organization. Genes & Development, 2012, 26( 1): 11– 24
|
[8] |
Lieberman-Aiden E . Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 2009, 326( 5950): 289– 293
|
[9] |
Dixon J R , Selvaraj S , Yue F , Kim A , Li Y , Shen Y , Hu M , Liu J S , Ren B . Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012, 485( 7398): 376– 380
|
[10] |
Nora E P . Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 2012, 485( 7398): 381– 385
|
[11] |
Jin F , Li Y , Dixon J R , Selvaraj S , Ye Z , Lee A Y , Yen C A , Schmitt A D , Espinoza C A , Ren B . A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature, 2013, 503( 7475): 290– 294
|
[12] |
Bonev B , Cavalli G . Organization and function of the 3D genome. Nature Reviews Genetics, 2016, 17( 11): 661– 678
|
[13] |
Schmitt A D , Hu M , Ren B . Genome-wide mapping and analysis of chromosome architecture. Nature Reviews Molecular Cell Biology, 2016, 17
|
[14] |
Nagano T , Lubling Y , Stevens T J , Schoenfelder S , Yaffe E , Dean W , Laue E D , Tanay A , Fraser P . Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 2013, 502( 7469): 59– 64
|
[15] |
Rao S S . A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014, 159( 7): 1665– 1680
|
[16] |
Luger K , Dechassa M L , Tremethick D J . New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?. Nature Reviews Molecular Cell Biology, 2012, 13( 7): 436–
|
[17] |
Hu Z , Tee W W . Enhancers and chromatin structures: regulatory hubs in gene expression and diseases. Bioscience Reports, 2017, 37( 2): BSR20160183–
|
[18] |
Hu M , Deng K , Qin Z H , Dixon J , Selvaraj S , Fang J , Ren B , Liu J S . Bayesian inference of spatial organizations of chromosomes. PLoS Computational Biology, 2013, 9( 1): e1002893–
|
[19] |
Filippova D , Patro R , Duggal G , Kingsford C . Identification of alternative topological domains in chromatin. Algorithms for Molecular Biology, 2014, 9( 1): 14–
|
[20] |
Lévy-Leduc C , Delattre M , Mary-Huard T , Robin S . Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics, 2014, 30( 17): i386– i392
|
[21] |
Baù D , Sanyal A , Lajoie B R , Capriotti E , Byron M , Lawrence J B , Dekker J , Marti-Renom M A . The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nature Structural & Molecular Biology, 2011, 18( 1): 107– 114
|
[22] |
Zhang Z Z , Li G L , Toh K C , Sung W K . 3D chromosome modeling with semi-definite programming and Hi-C data. Journal of Computational Biology, 2013, 20( 11): 831– 846
|
[23] |
Segal M R , Xiong H , Capurso D , Vazquez M , Arsuaga J . Reproducibility of 3d chromatin configuration reconstructions. Biostatistics, 2014, 15( 3): 442– 456
|
[24] |
Lesne A , Riposo J , Roger P , Cournac A , Mozziconacci J . 3D genome reconstruction from chromosomal contacts. Nature Methods, 2014, 11( 11): 1141– 1143
|
[25] |
Zhang B, Wolynes P G. Topology, structures, and energy landscapes of human chromosomes. In: Proceedings of the National Academy of Sciences. 2015, 112(19):6062−6067
|
[26] |
Imakaev M V , Fudenberg G , Mirny L A . Modeling chromosomes: Beyond pretty pictures. FEBS Letters, 2015, 589( 20PartA): 3031– 3036
|
[27] |
Flores S , Lu L , Yang J , Carriero N , Gerstein M . Hinge atlas: relating protein sequence to sites of structural flexibility. BMC Bioinformatics, 2007, 8( 1): 1– 20
|
[28] |
Emekli U , Dina S , Wolfson H , Nussinov R , Haliloglu T . HingeProt: automated prediction of hinges in protein structures. Proteins, 2008, 70( 4): 1219– 1227
|
[29] |
Keating K S , Flores S C , Gerstein M B , Kuhn L A . StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Science, 2009, 18( 2): 359– 371
|
[30] |
Shatsky M , Nussinov R , Wolfson H J . FlexProt: alignment of flexible protein structures without a predefinition of hinge regions. Journal of Computational Biology, 2004, 11( 1): 83– 8106
|
[31] |
Flores S , Gerstein M . FlexOracle: predicting flexible hinges by identification of stable domains. BMC Bioinformatics, 2007, 8( 1): 1– 17
|
[32] |
Tama F , Gadea F X , Marques O , Sanejouand Y H . Building-block approach for determining low-frequency normal modes of macromolecules. Proteins: Structure, Function, and Bioinformatics, 2000, 41( 1): 1– 7
|
[33] |
Halle B . Flexibility and packing in proteins. PNAS, 2002, 99
|
[34] |
Kundu S , Melton J S , Sorensen D C , Phillips J G N . Dynamics of proteins in crystals: comparison of experiment with simple models. Biophysical Journal, 2002, 83
|
[35] |
Kondrashov D A , Van Wynsberghe A W , Bannen R M , Cui Q , Phillips J G N . Protein structural variation in computational models and crystallographic data. Structure, 2007, 15
|
[36] |
Song G , Jernigan R L . Vgnm: a better model for understanding the dynamics of proteins in crystals. Journal of Molecular biology, 2007, 369( 3): 880– 893
|
[37] |
Hinsen K . Structural flexibility in proteins: impact of the crystal environment. Bioinformatics, 2008, 24
|
[38] |
Park J K , Jernigan R , Wu Z . Coarse grained normal mode analysis vs. refined gaussian network model for protein residue-level structural fluctuations. Bulletin of Mathematical Biology, 2013, 75
|
[39] |
Demerdash O N A , Mitchell J C . Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis. Proteins: Structure Function and Bioinformatics, 2012, 80( 7): 1766– 1779
|
[40] |
Zhang F L , Brüschweiler R . Contact model for the prediction of nmr nh order parameters in globular proteins. Journal of the American Chemical Society, 2002, 124( 43): 12654– 12655
|
[41] |
Lin C P , Huang S W , Lai Y L , Yen S C , Shih C H , Lu C H , Huang C C , Hwang J K . Deriving protein dynamical properties from weighted protein contact number. Proteins: Structure, Function, and Bioinformatics, 2008, 72( 3): 929– 935
|
[42] |
Huang S W , Shih C H , Lin C P , Hwang J K . Prediction of nmr order parameters in proteins using weighted protein contact-number model. Theoretical Chemistry Accounts, 2008, 121( 3-4): 197– 200
|
[43] |
Li D W , Brüschweiler R . All-atom contact model for understanding protein dynamics from crystallographic b-factors. Biophysical Journal, 2009, 96( 8): 3074– 3081
|
[44] |
Xia K L , Opron K , Wei G W . Multiscale multiphysics and multidomain models-flexibility and rigidity. Journal of Chemical Physics, 2013, 139
|
[45] |
Opron K , Xia K L , Wei G W . Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis. Journal of Chemical Physics, 2014, 140
|
[46] |
Tirion M M . Large amplitude elastic motions in proteins from a singleparameter, atomic analysis. Physical Review Letters, 1996, 77
|
[47] |
Cui Q, Bahar I. Normal mode analysis: theory and applications to biological and chemical systems. 1st ed. London: Chapman and Hall Led, 2006
|
[48] |
Opron K , Xia K L , Wei G . Communication: Capturing protein multiscale thermal fluctuations. The Journal of Chemical Physics, 2015, 142( 21): 211101–
|
[49] |
Nguyen D D , Xia K L , Wei G W . Generalized flexibility-rigidity index. Journal of Chemical Physics, 2016, 144
|
[50] |
Bramer D , Wei G W . Multiscale weighted colored graphs for protein flexibility and rigidity analysis. The Journal of Chemical Physics, 2018, 148( 5): 054103–
|
[51] |
Go N, Noguti T, Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. In: Proceedings of the National Academy of Science of the U.S.A.. 1983, 80: 3696−3700
|
[52] |
Ma J P . Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure, 2005, 13
|
[53] |
Nguyen D D , Xiao T , Wang M L , Wei G W . Rigidity strengthening: a mechanism for protein-ligand binding. Journal of Chemical Information and Modeling, 2017, 57( 7): 1715– 1721
|
[54] |
Xia K L, Wei G W. A review of geometric, topological and graph theory apparatuses for the modeling and analysis of biomolecular data. arXiv preprint arXiv: 161201735, 1612
|
[55] |
Xia K L , Li Z M , Mu L . Multiscale persistent functions for biomolecular structure characterization. Bulletin of Mathematical Biology, 2018, 80( 1): 1– 31
|
[56] |
Sauerwald N , Zhang S , Kingsford C , Bahar I . Chromosomal dynamics predicted by an elastic network model explains genome-wide accessibility and long-range couplings. Nucleic Acids Research, 2017, 45( 7): 3663– 3673
|
[57] |
Opron K, Xia K L, Wei G W. Communication: Capturing protein multiscale thermal fluctuations. Journal of Chemical Physics, 2015, 142(211101)
|
[58] |
Allen M P, Tildesley D J. Computer Simulation of Liquids. 1st ed. Oxford: Clarendon Press, 1987
|
[59] |
Liu T T , Chen M X , Lu B Z . Parameterization for molecular Gaussian surface and a comparison study of surface mesh generation. Journal of Molecular Modeling, 2015, 21( 5): 113–
|
[60] |
Yaffe E , Tanay A . Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nature Genetics, 2011, 43( 11): 1059– 1065
|
[61] |
Imakaev M , Fudenberg G , McCord R P , Naumova N , Goloborodko A , Lajoie B R , Dekker J , Mirny L A . Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods, 2012, 9( 10): 999– 1003
|
[62] |
Ay F , Bailey T L , Noble W S . Statistical confidence estimation for hi-c data reveals regulatory chromatin contacts. Genome Research, 2014, 24( 6): 999– 1011
|
[63] |
Witten D M , Noble W S . On the assessment of statistical significance of three-dimensional colocalization of sets of genomic elements. Nucleic Acids Research, 2012, 40( 9): 3849– 3855
|
[64] |
Hu M , Deng K , Selvaraj S , Qin Z H , Ren B , Liu J S . HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 2012, 28( 23): 3131– 3133
|
[65] |
Knight P A , Ruiz D . A fast algorithm for matrix balancing. IMA Journal of Numerical Analysis, 2013, 33( 3): 1029– 1047
|
[66] |
Boulos R E , Arneodo A , Jensen P , Audit B . Revealing long-range interconnected hubs in human chromatin interaction data using graph theory. Physical Review Letters, 2013, 111( 11): 118102–
|
[67] |
Wang H, Duggal G, Patro R, Girvan M, Hannenhalli S, Kingsford C. Topological properties of chromosome conformation graphs reflect spatial proximities within chromatin. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics. 2013, 306
|
[68] |
Siahpirani A F , Ay F , Roy S . A multi-task graph-clustering approach for chromosome conformation capture data sets identifies conserved modules of chromosomal interactions. Genome Biology, 2016, 17( 1): 114–
|
[69] |
Chen J , Hero A O , Rajapakse I . Spectral identification of topological domains. Bioinformatics, 2016, 32( 14): 2151– 2158
|
[70] |
Tjong H, et al. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. In: Proceedings of the National Academy of Sciences. 2016, 113(12):E1663-E1672
|
[71] |
Zhu G , Deng W , Hu H , Ma R , Zhang S , Yang J , Peng J , Kaplan T , Zeng J . Reconstructing spatial organizations of chromosomes through manifold learning. Nucleic Acids Research, 2018, 46( 8): e50– e50
|
[72] |
Casper J . The ucsc genome browser database: 2018 update. Nucleic Acids Research, 2017, 46( D1): D762– D769
|
/
〈 | 〉 |