Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm

Xia-an BI, Yiming XIE, Hao WU, Luyun XU

PDF(625 KB)
PDF(625 KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156903. DOI: 10.1007/s11704-020-9520-3
RESEARCH ARTICLE

Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm

Author information +
History +

Abstract

Mild cognitive impairment (MCI) as the potential sign of serious cognitive decline could be divided into two stages, i.e., late MCI (LMCI) and early MCI (EMCI). Although the different cognitive states in the MCI progression have been clinically defined, effective and accurate identification of differences in neuroimaging data between these stages still needs to be further studied. In this paper, a new method of clustering-evolutionary weighted support vector machine ensemble (CEWSVME) is presented to investigate the alterations from cognitively normal (CN) to EMCI to LMCI. The CEWSVME mainly includes two steps. The first step is to build multiple SVM classifiers by randomly selecting samples and features. The second step is to introduce the idea of clustering evolution to eliminate inefficient and highly similar SVMs, thereby improving the final classification performances. Additionally, we extracted the optimal features to detect the differential brain regions in MCI progression, and confirmed that these differential brain regions changed dynamically with the development of MCI. More exactly, this study found that some brain regions only have durative effects on MCI progression, such as parahippocampal gyrus, posterior cingulate gyrus and amygdala, while the superior temporal gyrus and the middle temporal gyrus have periodic effects on the progression. Our work contributes to understanding the pathogenesis of MCI and provide the guidance for its timely diagnosis.

Keywords

machine learning / MCI progression / optimal feature extraction / differential brain regions / functional magnetic resonance imaging

Cite this article

Download citation ▾
Xia-an BI, Yiming XIE, Hao WU, Luyun XU. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm. Front. Comput. Sci., 2021, 15(6): 156903 https://doi.org/10.1007/s11704-020-9520-3

References

[1]
Sherman D S, Mauser J, Nuno M, Sherzai D. The efficacy of cognitive intervention in mild cognitive impairment (MCI): a meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 2017, 27(4): 440–484
CrossRef Google scholar
[2]
Li J Q, Tan L, Wang H F, Tan M S, Tan L, Xu W, Zhao Q F, Wang J, Jiang T, Yu J T. Risk factors for predicting progression from mild cognitive impairment to alzheimer’s disease: a systematic review and meta-analysis of cohort studies. Journal of Neurology, Neurosurgery & Psychiatry, 2016, 87(5): 476–484
CrossRef Google scholar
[3]
Yi H A, Möller C, Dieleman N, Bouwman F H, Barkhof F, Scheltens P, van der Flier W M, Vrenken H. Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 2016, 87(4): 425–432
CrossRef Google scholar
[4]
Ramírez J, Górriz J M, Ortiz A, Martínez-Murcia F J, Segovia F, Salas-Gonzalez D, Castillo-Barnes D, Illán I A, Puntonet C G. Ensemble of random forests one vs. rest classifiers for MCI and ad prediction using anova cortical and subcortical feature selection and partial least squares. Journal of Neuroscience Methods, 2018, 302: 47–57
CrossRef Google scholar
[5]
ten Brinke L F, Bolandzadeh N, Nagamatsu L S, Hsu C L, Davis J C, Miran-Khan K, Liu-Ambrose T. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6- month randomised controlled trial. British Journal of Sports Medicine, 2015, 49(4): 248–254
CrossRef Google scholar
[6]
Spulber G, Simmons A, Muehlboeck J S, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, Soininen H, Spenger C, Lovestone S, Wahlund L O, Westman E, et al. An MRI-based index to measure the severity of alzheimer’s disease-like structural pattern in subjects with mild cognitive impairment. Journal of Internal Medicine, 2013, 273(4): 396–409
CrossRef Google scholar
[7]
Mecca A P, Michalak H R, McDonald JW, Kemp E C, Pugh E A, Becker M L, Mecca M C, van Dyck C H. Sleep disturbance and the risk of cognitive decline or clinical conversion in the adni cohort. Dementia and Geriatric Cognitive Disorders, 2018, 45(3–4): 232–242
CrossRef Google scholar
[8]
Jagust W J, Landau S M, Koeppe R A, Reiman E M, Chen K, Mathis C A, Price J C, Foster N L, Wang A Y. The alzheimer’s disease neuroimaging initiative 2 pet core: 2015. Alzheimer’s & Dementia, 2015, 11(7): 757–771
CrossRef Google scholar
[9]
Lee E S, Yoo K, Lee Y B, Chung J, Lim J E, Yoon B, Jeong Y. Default mode network functional connectivity in early and late mild cognitive impairment. Alzheimer Disease & Associated Disorders, 2016, 30(4): 289–296
CrossRef Google scholar
[10]
Cai S, Chong T, Peng Y, Shen W, Li J, von Deneen K M, Huang L. Altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study. Brain Imaging and Behavior, 2017, 11(3): 619–631
CrossRef Google scholar
[11]
Fei F, Jie B, Zhang D. Frequent and discriminative subnetwork mining for mild cognitive impairment classification. Brain Connectivity, 2014, 4(5): 347–360
CrossRef Google scholar
[12]
Bi X A, Xu Q, Luo X, Sun Q, Wang Z. Weighted random support vector machine clusters analysis of resting-state fMRI in mild cognitive impairment. Frontiers in Psychiatry, 2018, 9: 340
CrossRef Google scholar
[13]
McKenna F, Koo B B, Killiany R, et al. Comparison of apoe-related brain connectivity differences in early MCI and normal aging populations: an fMRI study. Brain Imaging and Behavior, 2016, 10(4): 970–983
CrossRef Google scholar
[14]
Wee C Y, Yang S, Yap P T, Shen D, et al. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging and Behavior, 2016, 10(2): 342–356
CrossRef Google scholar
[15]
Jie B, Liu M, Shen D. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Medical Image Analysis, 2018, 47: 81–94
CrossRef Google scholar
[16]
Grajski K A, Bressler S L. Differential medial temporal lobe and defaultmode network functional connectivity and morphometric changes in alzheimer’s disease. NeuroImage: Clinical, 2019, 23: 101860
CrossRef Google scholar
[17]
Daianu M, Jahanshad N, Nir T M, Jack Jr C R, Weiner M W, Bernstein M A, Thompson P M, et al. Rich club analysis in the alzheimer’s disease connectome reveals a relatively undisturbed structural core network. Human Brain Mapping, 2015, 36(8): 3087–3103
CrossRef Google scholar
[18]
Jie B, Liu M, Zhang D, Shen D. Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Transactions on Image Processing, 2018, 27(5): 2340–2353
CrossRef Google scholar
[19]
Ding X, Charnigo R J, Schmitt F A, Kryscio R J, Abner E L, et al. Evaluating trajectories of episodic memory in normal cognition and mild cognitive impairment: results from adni. PLoS ONE, 2019, 14(2): e0212435
CrossRef Google scholar
[20]
Schetinin V, Jakaite L, Nyah N, Novakovic D, Krzanowski W. Feature extraction with gmdh-type neural networks for eeg-based person identification. International Journal of Neural Systems, 2017, 28(6): 1750064
CrossRef Google scholar
[21]
Du L, Liu K, Zhu L, Yao X, Risacher S L, Guo L, Saykin A J, Shen L, et al. Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the adni cohort. Bioinformatics (Oxford, England), 2019, 35(14): i474–i483
CrossRef Google scholar
[22]
Yan K, Xu Y, Fang X, Zheng C, Liu B. Protein fold recognition based on sparse representation based classification. Artificial Intelligence in Medicine, 2017, 79: 1–8
CrossRef Google scholar
[23]
Wu D, Zheng S J, Zhang X P, Yuan C A, Cheng F, Zhao Y, Lin Y J, Zhao Z Q, Jiang Y L, Huang D S. Deep learning-based methods for person re-identification: a comprehensive review. Neurocomputing, 2019, 337: 354–371
CrossRef Google scholar
[24]
Jin Q, Meng Z, Pham T D, Chen Q, Wei L, Su R. Dunet: a deformable network for retinal vessel segmentation. Knowledge-Based Systems, 2019, 178: 149–162
CrossRef Google scholar
[25]
Su R, Liu X, Wei L, Zou Q. Deep-resp-forest: a deep forest model to predict anti-cancer drug response. Methods, 2019, 166: 91–102
CrossRef Google scholar
[26]
Zeng X, Yuan S, Huang X, Zou Q. Identification of cytokine via an improved genetic algorithm. Frontiers of Computer Science, 2015, 9(4): 643–651
CrossRef Google scholar
[27]
Chen X, Zhu C C, Yin J. Ensemble of decision tree reveals potential mirna-disease associations. PLoS Computational Biology, 2019, 15(7): e1007209
CrossRef Google scholar
[28]
Peng J, Hui W, Li Q, Chen B, Hao J, Jiang Q, Shang X, Wei Z. A learningbased framework for mirna-disease association identification using neural networks. Bioinformatics (Oxford, England), 2019, 35(21): 4364–4371
CrossRef Google scholar
[29]
Cui H, Zhang X. Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 2013, 14: 641
CrossRef Google scholar
[30]
Prasad G, Joshi S H, Nir T M, Toga A W, Thompson P M. Brain connectivity and novel network measures for alzheimer’s disease classification. Neurobiology of Aging, 2015, 36: S121–S131
CrossRef Google scholar
[31]
Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and alzheimer’s disease. Brain Imaging and Behavior, 2016, 10(3): 799–817
CrossRef Google scholar
[32]
Echávarri C, Aalten P, Uylings H B M, Jacobs H I L, Visser P J, Gronenschild E H BM, Verhey F R J, Burgmans S. Atrophy in the parahippocampal gyrus as an early biomarker of alzheimer’s disease. Brain Structure and Function, 2011, 215(3): 265–271
CrossRef Google scholar
[33]
Chao L L, Mueller S G, Buckley S T, Peek K, Raptentsetseng S, Elman J, Yaffe K, Miller B L, Kramer J H, Madison C, Mungas D, Schuff N, Weiner M W. Evidence of neurodegeneration in brains of older adults who do not yet fulfill MCI criteria. Neurobiology of Aging, 2010, 31(3): 368–377
CrossRef Google scholar
[34]
Kim S M, Kim M J, Rhee H Y, Ryu C W, Kim E J, Petersen E T, Jahng G H. Regional cerebral perfusion in patients with alzheimer’s disease and mild cognitive impairment: effect of apoe epsilon4 allele. Neuroradiology, 2013, 55(1): 25–34
CrossRef Google scholar
[35]
Ward A M, Schultz A P, Huijbers W, Van Dijk K R A, Hedden T, Sperling R A. The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Human Brain Mapping, 2014, 35(3): 1061–1073
CrossRef Google scholar
[36]
Luck D, Danion J M, Marrer C, Pham B T, Gounot D, Foucher J. The right parahippocampal gyrus contributes to the formation and maintenance of bound information in working memory. Brain and Cognition, 2010, 72(2): 255–263
CrossRef Google scholar
[37]
Browndyke J N, Giovanello K, Petrella J, Hayden K, Chiba-Falek O, Tucker K A, Burke J R, Welsh-Bohmer K A. Phenotypic regional functional imaging patterns during memory encoding in mild cognitive impairment and alzheimer’s disease. Alzheimer’s & Dementia, 2013, 9(3): 284–294
CrossRef Google scholar
[38]
Kantarci K, Jack C R, Xu Y C, Campeau N G, O’Brien P C, Smith G E, Ivnik R J, Boeve B F, Kokmen E, Tangalos E G, Petersen R C. Regional metabolic patterns in mild cognitive impairment and alzheimer’s disease: a 1h mrs study. Neurology, 2000, 55(2): 210–217
CrossRef Google scholar
[39]
Camus V, Payoux P, Barré L, Desgranges B, Voisin T, Tauber C, La Joie R, Tafani M, Hommet C, Chételat G, Mondon K, de La Sayette V, Cottier J P, Beaufils E, Ribeiro M J, Gissot V, Vierron E, Vercouillie J, Vellas B, Eustache F, Guilloteau D. Using pet with 18f-av-45 (florbetapir) to quantify brain amyloid load in a clinical environment. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39(4): 621–631
CrossRef Google scholar
[40]
Bailly M, Destrieux C, Hommet C, Mondon K, Cottier J P, Beaufils E, Vierron E, Vercouillie J, Ibazizene M, Voisin T, Payoux P, Barré L, Camus V, Guilloteau D, Ribeiro MJ. Precuneus and cingulate cortex atrophy and hypometabolism in patients with alzheimer&’s disease and mild cognitive impairment: MRI and 18f-fdg pet quantitative analysis using freesurfer. BioMed Research International, 2015, 2015: 583931
CrossRef Google scholar
[41]
Cai S, Huang L, Zou J, Jing L, Zhai B, Ji G, von Deneen K M, Ren J, Ren A, et al. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI. PLoS ONE, 2015, 10(2): e0115573
CrossRef Google scholar
[42]
Li H, Fang S, Contreras J A, West J D, Risacher S L, Wang Y, Sporns O, Saykin A J, Goñi J, Shen L, et al. Brain explorer for connectomic analysis. Brain Informatics, 2017, 4(4): 253–269
CrossRef Google scholar
[43]
Xiang J, Guo H, Cao R, Liang H, Chen J. An abnormal resting-state functional brain network indicates progression towards alzheimer’s disease. Neural Regeneration Research, 2013, 8(30): 2789–2799
[44]
Wei H, Kong M, Zhang C, Guan L, Ba M, et al. The structural MRI markers and cognitive decline in prodromal alzheimer’s disease: a 2-year longitudinal study. Quantitative Imaging in Medicine and Surgery, 2018, 8(10): 1004–1019
CrossRef Google scholar
[45]
Ribeiro A S, Lacerda L M, Silva N A d, Ferreira H A. Multimodal imaging of brain connectivity using the mibca toolbox: preliminary application to alzheimer’s disease. IEEE Transactions on Nuclear Science, 2015, 62(3): 604–611
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(625 KB)

Accesses

Citations

Detail

Sections
Recommended

/