Multi-affect(ed): improving recommendation with similarity-enhanced user reliability and influence propagation
Lele HUANG, Huifang MA, Xiangchun HE, Liang CHANG
Multi-affect(ed): improving recommendation with similarity-enhanced user reliability and influence propagation
Traditional recommendation algorithms predict the latent interest of an active user by collecting rating information from other similar users or items. Recently, more and more recommendation systems attempt to involve social relations to improve recommendation performance. However, the existing works either leave out the user reliability or cannot capture the correlation between two users who are similar but not socially connected. Besides, they also take the trust value between users either 0 or 1, thus degenerating the prediction accuracy. In this paper, we propose an efficient social affect model, multiaffect(ed), for recommendation via incorporating both users’ reliability and influence propagation. Specifically, the model contains two main components, i.e., computation of user reliability and influence propagation, designing of user-shared feature space. Firstly, a reliability calculation strategy based on user similarity is developed for measuring the recommendation accuracy between users. Then, the factor of influence propagation relationship among users is taken into consideration. Finally, the multi-affect(ed) model is developed with user-shared feature space to generate the predicted ratings.
recommender systems / similarity-enhanced user reliability / user-shared feature space / influence propagation / matrix factorization
[1] |
Ji S J, Yang W, Guo S H, Chiu D KW, Zhang C J, Yuan X Y. Asymmetric response aggregation heuristics for rating prediction and recommendation. Applied Intelligence, 2020, 50(5): 1416–1436
CrossRef
Google scholar
|
[2] |
Li Z, Zhao H K, Liu Q, Huang Z Y, Mei T, Chen E H. Learning from history and present: next-item recommendation via discriminatively ex ploiting user behaviors. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2018, 1734–1743
CrossRef
Google scholar
|
[3] |
Zhao W Z, Ma H F, Li Z X, Ao X, Li N. SBRNE: an improved unified framework for social and behavior recommendations with network embedding. In: Proceedings of the 24th International Conference on Database Systems for Advanced Applications. 2019, 555–571
CrossRef
Google scholar
|
[4] |
Bobadilla J, Hernando A, Ortega F, Gutierrez A. Collaborative filtering based on significances. Information Sciences, 2012, 185(1): 1–17
CrossRef
Google scholar
|
[5] |
Chen C C, Wan Y H, Chung M C, Sun Y C. An effective recommendation method for cold start new users using trust and distrust networks. Information Sciences, 2013, 224: 19–36
CrossRef
Google scholar
|
[6] |
Hu G N, Dai X Y, Qiu F Y, Xia R, Li T, Huang S J, Chen J J. Collaborative filtering with topic and social latent factors incorporating implicit feedback. ACM Transactions on Knowledge Discovery from Data, 2018, 12(2): 1–30
CrossRef
Google scholar
|
[7] |
Ma H, Yang H, Lyu M R, King I. SoRec: social recommendation using probabilistic matrix factorization. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. 2008, 931–940
CrossRef
Google scholar
|
[8] |
Tang J, Hu X, Liu H. Social recommendation: a review. Social Network Analysis and Mining, 2013, 3(4): 1113–1133
CrossRef
Google scholar
|
[9] |
Guo G, Zhang J, Thalmann D. A simple but effective method to incorporate trusted neighbors in recommender systems. In: Proceedings of the 20th International Conference on User Modeling, Adaptation and Personalization. 2012, 114–125
CrossRef
Google scholar
|
[10] |
Zhang D, Hsu C H, Chen M, Chen Q, Xiong N X, Mauri J L. Cold-start recommendation using bi-clustering and fusion for large-scale social recommender systems. IEEE Transactions on Emerging Topics in Computing, 2014, 2(2): 239–250
CrossRef
Google scholar
|
[11] |
Guo X, Yin S C, Zhang Y W, Li W, He Q. Cold start recommendation based on attribute-fused singular value decomposition. IEEE Access, 2019, 7: 11349–11359
CrossRef
Google scholar
|
[12] |
Fang H, Bao Y, Zhang J. Leveraging decomposed trust in probabilistic matrix factorization for effective recommendation. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014, 30–36
|
[13] |
Guo G, Zhang J, Yorke-Smith N. A novel recommendation model regularized with user trust and item ratings. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(7): 1607–1620
CrossRef
Google scholar
|
[14] |
Ma H, Zhou D, Liu C, Lyu M R, King I. Recommender systems with social regularization. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining. 2011, 287–296
CrossRef
Google scholar
|
[15] |
Fan W Q,Ma Y , Li Q , He Y, Zhao Y H E, Tang J L, Yin DW. Graph neural networks for social recommendation. In: Proceedings of the 28th World Wide Web Conference. 2019, 417–426
CrossRef
Google scholar
|
[16] |
Ouaftouh S, Zellou A, Idri A. Social recommendation: a user profile clustering-based approach. Concurrency and Computation Practice and Experience, 2019, 31(20): e5330
CrossRef
Google scholar
|
[17] |
He X N, Zhang H W, Kan M Y. Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2016, 549–558
CrossRef
Google scholar
|
[18] |
Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. 2011, 2644–2649
|
[19] |
Liu H F, Jing L P, Yu J. Survey of matrix factorization based recommendation methods by integrating social information. Journal of Software, 2018, 29(2): 340–362
|
[20] |
Yang B, Lei Y, Liu D Y, Liu J M. Social collaborative filtering by trust. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 2013, 2747–2753
|
[21] |
Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the 2010 ACM Conference on Recommender Systems. 2010, 26–30
CrossRef
Google scholar
|
[22] |
Zhang Z, Liu H. Social recommendation model combining trust propagation and sequential behaviors. Applied Intelligence, 2015, 43(3): 695–706
CrossRef
Google scholar
|
[23] |
Park C, Kim D, Oh J, Yu H. Improving top-K recommendation with truster and trustee relationship in user trust network. Information Sciences, 2016, 374: 100–114
CrossRef
Google scholar
|
[24] |
Ma H, King I, Lyu M. Learning to recommend with social trust ensemble. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2009, 203–210
CrossRef
Google scholar
|
[25] |
Tang J L, Hu X, Gao H J, Liu H. Exploiting local and global social context for recommendation. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 2013, 2712–2718
|
[26] |
Tang J L, Wang S H, Hu X, Yin D W, Bi Y Z, Chang Y, Liu H. Recommendation with social dimensions. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016, 251–257
|
[27] |
Deng S, Huang L, Xu G, Wu X, Wu Z. On deep learning for trust-aware recommendations in social networks. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5): 1147–1159
CrossRef
Google scholar
|
[28] |
Pan Y, He F, Yu H. Trust-aware collaborative denoising auto-encoder for top-N recommendation. 2017, arXiv preprint arXiv: 1703.01760
|
[29] |
Fan WQ, Ma Y, Yin DW, Wang J P, Tang J L, Li Q. Deep social collaborative filtering. In: Proceedings of the 13th ACM Conference on Recommender Systems. 2019, 305–313
CrossRef
Google scholar
|
[30] |
Sedhain S, Menon A K, Sanner S, Xie L X. AutoRec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 111–112
CrossRef
Google scholar
|
[31] |
Li S, Kawale J, Fu Y. Deep collaborative filtering via marginalized denoising auto-encoder. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015, 811–820
CrossRef
Google scholar
|
[32] |
Wu Y, DuBois C, Zheng A X, Ester M. Collaborative denoising autoencoders for top-N recommender systems. In: Proceedings of the 9th ACM International Conference on Web Search and Data Mining. 2016, 153–162
CrossRef
Google scholar
|
[33] |
Gao M, Chen L H, He X N, Zhou A Y. BiNE: bipartite network embedding. In: Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. 2018, 715–724
CrossRef
Google scholar
|
[34] |
Wu B, Lou Z Z, Ye Y D. Co-regularized matrix factorization recommendation algorithm. Journal of Software, 2018, 29(9): 2681–2696
|
[35] |
Liu Q, Xiang B, Yuan N J, Chen E H, Xiong H, Zheng Y, Yang Y. An influence propagation view of pagerank. ACM Transactions on Knowledge Discovery from Data, 2017, 11(3): 1–30
CrossRef
Google scholar
|
[36] |
Yang Y, Chen E, Liu Q, Xiang B, Xu T, Shad S A. On approximation of real-world influence spread. In: Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases. 2012, 548–564
CrossRef
Google scholar
|
[37] |
Yu Y H, Gao Y, Wang H, Sun S Z. Integrating user social status and matrix factorization for item recommendation. Journal of Computer Research and Development, 2018, 55(1): 113–124
|
[38] |
Salakhutdinov R, Mnih A. Probabilistic matrix factorization. In: Proceedings of the 22nd Annual Conference on Advances in Neural Information Processing Systems. 2007, 1257–1264
|
[39] |
Guo G, Zhang J, Yorke-Smith N. A novel Bayesian similarity measure for recommender systems. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 2013, 2619–2625
|
[40] |
Meng X W, Liu S D, Zhang Y J, Hu X. Research on social recommender systems. Journal of Software, 2015, 26(6): 1356–1372
|
[41] |
Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble. In: Proceedings of the 32nd International ACM SIGIR Conference On Research and Development in Information Retrieval. 2009, 203–210
CrossRef
Google scholar
|
/
〈 | 〉 |