Detecting differential transcript usage across multiple conditions for RNA-seq data based on the smoothed LDA model

Jing LI, Xuejun LIU, Daoqiang ZHANG

PDF(230 KB)
PDF(230 KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 153319. DOI: 10.1007/s11704-020-9348-x
LETTER

Detecting differential transcript usage across multiple conditions for RNA-seq data based on the smoothed LDA model

Author information +
History +

Cite this article

Download citation ▾
Jing LI, Xuejun LIU, Daoqiang ZHANG. Detecting differential transcript usage across multiple conditions for RNA-seq data based on the smoothed LDA model. Front. Comput. Sci., 2021, 15(3): 153319 https://doi.org/10.1007/s11704-020-9348-x

References

[1]
Hooper J E. A survey of software for genome-wide discovery of differential splicing in RNA-Seq data. Human Genomics, 2014, 8(1): 3
CrossRef Google scholar
[2]
Liu X, Shi X, Chen C, Zhang L. Improving RNA-Seq expression estimation by modeling isoform-and exon-specific read sequencing rate. BMC Bioinformatics, 2015, 16(1): 332
CrossRef Google scholar
[3]
Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3(Jan): 993–1022
[4]
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Research, 2012, 22(10): 2008–2017
CrossRef Google scholar
[5]
Trincado J L, Entizne J C, Hysenaj G, Singh B, Skalic M, Elliott D J, Eyras E. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biology, 2018, 19(1): 40
CrossRef Google scholar
[6]
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(230 KB)

Accesses

Citations

Detail

Sections
Recommended

/