A Monte Carlo Neural Fictitious Self-Play approach to approximate Nash Equilibrium in imperfect-information dynamic games
Li ZHANG , Yuxuan CHEN , Wei WANG , Ziliang HAN , Shijian Li , Zhijie PAN , Gang PAN
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (5) : 155334
A Monte Carlo Neural Fictitious Self-Play approach to approximate Nash Equilibrium in imperfect-information dynamic games
Solving the optimization problem to approach a Nash Equilibrium point plays an important role in imperfect information games, e.g., StarCraft and poker. Neural Fictitious Self-Play (NFSP) is an effective algorithm that learns approximate Nash Equilibrium of imperfect-information games from purely self-play without prior domain knowledge. However, it needs to train a neural network in an off-policy manner to approximate the action values. For games with large search spaces, the training may suffer from unnecessary exploration and sometimes fails to converge. In this paper, we propose a new Neural Fictitious Self-Play algorithmthat combinesMonte Carlo tree search with NFSP, called MC-NFSP, to improve the performance in real-time zero-sum imperfect-information games. With experiments and empirical analysis, we demonstrate that the proposed MC-NFSP algorithm can approximate Nash Equilibrium in games with large-scale search depth while the NFSP can not. Furthermore, we develop an Asynchronous Neural Fictitious Self-Play framework (ANFSP). It uses asynchronous and parallel architecture to collect game experience and improve both the training efficiency and policy quality. The experiments with th e games with hidden state information (Texas Hold’em), and the FPS (firstperson shooter) games demonstrate effectiveness of our algorithms.
approximate Nash Equilibrium / imperfectinformation games / dynamic games / Monte Carlo tree search / Neural Fictitious Self-Play / reinforcement learning
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |