Information retrieval: a view from the Chinese IR community

Zhumin CHEN , Xueqi CHENG , Shoubin DONG , Zhicheng DOU , Jiafeng GUO , Xuanjing HUANG , Yanyan LAN , Chenliang LI , Ru LI , Tie-Yan LIU , Yiqun LIU , Jun MA , Bing QIN , Mingwen WANG , Jirong WEN , Jun XU , Min ZHANG , Peng ZHANG , Qi ZHANG

Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (1) : 151601

PDF (502KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (1) : 151601 DOI: 10.1007/s11704-020-9159-0
REVIEW ARTICLE

Information retrieval: a view from the Chinese IR community

Author information +
History +
PDF (502KB)

Abstract

During a two-day strategic workshop in February 2018, 22 information retrieval researchers met to discuss the future challenges and opportunities within the field. The outcome is a list of potential research directions, project ideas, and challenges. This report describes themajor conclusionswe have obtained during the workshop. A key result is that we need to open our mind to embrace a broader IR field by rethink the definition of information, retrieval, user, system, and evaluation of IR. By providing detailed discussions on these topics, this report is expected to inspire our IR researchers in both academia and industry, and help the future growth of the IR research community.

Keywords

information retrieval / redefinition / information / scope of retrieval / retrieval models / users / system architecture / evaluation

Cite this article

Download citation ▾
Zhumin CHEN, Xueqi CHENG, Shoubin DONG, Zhicheng DOU, Jiafeng GUO, Xuanjing HUANG, Yanyan LAN, Chenliang LI, Ru LI, Tie-Yan LIU, Yiqun LIU, Jun MA, Bing QIN, Mingwen WANG, Jirong WEN, Jun XU, Min ZHANG, Peng ZHANG, Qi ZHANG. Information retrieval: a view from the Chinese IR community. Front. Comput. Sci., 2021, 15(1): 151601 DOI:10.1007/s11704-020-9159-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bush V. As we may think. The Atlantic Monthly, 1945, 176(1): 101–108

[2]

Clarke C. From the chair... ACM SIGIR Forum, 2016, 50(1): 1

[3]

Zobel J, Moffat A. Inverted files for text search engines. ACM Computing Surveys (CSUR), 2006, 38(2): 6

[4]

Salton G, Wong A, Yang C S. A vector space model for automatic indexing. Communications of the ACM, 1975, 18(11): 613–620

[5]

Robertson S, Zaragoza H. The probabilistic relevance framework: Bm25 and beyond. Foundations and Trends® in Information Retrieval, 2009, 3(4): 333–389

[6]

Lv Y, Zhai C. Positional language models for information retrieval. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2009, 299–306

[7]

Zhai C, Lafferty J. A study of smoothing methods for language models applied to ad hoc information retrieval. ACM SIGIR Forum, 2017, 51(2): 268–276

[8]

Page L, Brin S, Motwani R, Winograd T. The pagerank citation ranking: bringing order to the web. Technical Report, Stanford InfoLab, 1999

[9]

Kleinberg J M. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46(5): 604–632

[10]

Chen C P, Zhang C Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Information Sciences, 2014, 275: 314–347

[11]

Sanderson M, Croft W B. The history of information retrieval research. Proceedings of the IEEE, 2012, 100 (Special Centennial Issue): 1444–1451

[12]

Chaudhuri S, Dayal U. An overview of data warehousing and olap technology. ACM Sigmod Record, 1997, 26(1): 65–74

[13]

Borlund P. The IIR evaluation model: a framework for evaluation of interactive information retrieval systems. Information Research, 2003, 8(3): 289–291

[14]

Hinton G, Deng L, Yu D, Dahl G, Mohamed A R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Kingsbury B. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 2012, 29(6): 82–97

[15]

LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 1995, 3361(10): 1995

[16]

Socher R, Huang E H, Pennin J, Manning C D, Ng A Y. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Proceedings of Advances in Neural Information Processing Systems. 2011, 801–809

[17]

Craswell N, Croft W B, Guo J, Mitra B, de Rijke M. Neu-IR: the SIGIR 2016 workshop on neural information retrieval. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2016, 1245–1246

[18]

Craswell N, Croft W B, de Rijke M, Guo J, Mitra B. SIGIR 2017 workshop on neural information retrieval (Neu-Ir’17). In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017, 1431–1432

[19]

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems. 2014, 2672–2680

[20]

Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Bellemare M G, Graves A, Riedmiller M, Fidjeland A K, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529–533

[21]

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Driessche G V D, Graepel T, Hassabis D. Mastering the game of go without human knowledge. Nature, 2017, 550(7676): 354

[22]

Wang J, Yu L, Zhang W, Gong Y, Xu Y, Wang B, Zhang P, Zhang D. Irgan: a minimax game for unifying generative and discriminative information retrieval models. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017, 515–524

[23]

Agichtein E, Brill E, Dumais S. Improving web search ranking by incorporating user behavior information. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2006, 19–26

[24]

Granka L A, Joachims T, Gay G. Eye-tracking analysis of user behavior in www search. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2004, 478–479

[25]

Morris M R, Teevan J, Panovich K. What do people ask their social networks, and why?: a survey study of status message q&a behavior. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2010, 1739–1748

[26]

Croft W B, Cronen-Townsend S, Lavrenko V. Relevance feedback and personalization: a language modeling perspective. In: Proceedings of the 2nd DELOS Network of Excellence Workshop on Personalisation and Recommender Systems in Digital Libraries. 2001

[27]

Thomee B, Lew M S. Interactive search in image retrieval: a survey. International Journal of Multimedia Information Retrieval, 2012, 1(2): 71–86

[28]

Said A, Jain B J, Narr S, Plumbaum T. Users and noise: the magic barrier of recommender systems. In: Proceedings of International Conference on User Modeling, Adaptation, and Personalization. 2012, 237–248

[29]

Swan M. Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc., 2015

[30]

Akyildiz I F, Akan Ö B, Chen C, Fang J, Su W. Interplanetary internet: state-of-the-art and research challenges. Computer Networks, 2003, 43(2): 75–112

[31]

Lavanya B M. Blockchain technology beyond bitcoin: an overview. International Journal of Computer Science and Mobile Applications, 2018, 6(1): 76–80

[32]

Seebacher S, Schüritz R. Blockchain technology as an enabler of service systems: a structured literature review. In: Proceedings of International Conference on Exploring Services Science. 2017, 12–23

[33]

Croft W B, Metzler D, Strohman T. Search Engines: Information Retrieval in Practice. Addison-Wesley Reading, 2010

[34]

Voorhees E M, Harman D K. TREC: Experiment and Evaluation in Information Retrieval. Cambridge: MIT Press, 2005

[35]

Kelly D. Methods for evaluating interactive information retrieval systems with users. Foundations and Trends® in Information Retrieval, 2009, 3(1–2): 1–224

[36]

Ellis D. Theory and explanation in information retrieval research. Journal of Information Science, 1984, 8(1): 25–38

[37]

Vakkari P, Järvelin K. Explanation in information seeking and retrieval. New Directions in Cognitive Information Retrieval, 2006, 19: 113–138

[38]

Singh J, Anand A. EXS: explainable search using local model agnostic interpretability. In: Proceedings of the 12th ACM International Conference on Web Search and Data Mining. 2019, 770–773

[39]

Luo G, Tang C, Yang H, Wei X. Medsearch: a specialized search engine for medical information retrieval. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. 2008, 143–152

[40]

Huang P S, He X, Gao J, Deng L, Acero A, Heck L. Learning deep structured semantic models for Web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. 2013, 2333–2338

[41]

Guo J, Fan Y, Ai Q, Croft W B. A deep relevance matching model for ad-hoc retrieval. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 2016, 55–64

[42]

Zhang Y, Rahman M M, Braylan A, Dang B, Chang H L, Kim H, Mc- Namara Q, Angert A, Banner E, Khetan V, McDonnell T, Nguyen A T, Xu D, Wallace B C, Leasey M. Neural information retrieval: a literature review. 2016, arXiv preprint arXiv:1611.06792

[43]

Mitra B, Craswell N. Neural models for information retrieval. 2017, arXiv preprint arXiv:1705.01509

[44]

Guo J, Fan Y, Pang L, Yang L, Ai Q, Zamani H, Wu C, Croft WB, Cheng X. A deep look into neural ranking models for information retrieval. 2019, arXiv preprint arXiv:1903.06902

[45]

Sharma D, Kumar S, Kholia C. Multi-modal information retrieval system. US Patent 7,054,818, 2006

[46]

Lee D, Park J, Ahn J H. On the explanation of factors affecting ecommerce adoption. In: Proceedings of the International Conference on Information Systems. 2001, 109–120

[47]

Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the 4th ACM Conference on Recommender Systems. 2010, 135–142

[48]

Callison-Burch C. Fast, cheap, and creative: evaluating translation quality using amazon’s mechanical turk. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009, 286–295

[49]

Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, 2013, 29(7): 1645–1660

[50]

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray D G, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. 2016, 265–283

[51]

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia. 2014, 675–678

[52]

Paszke A, Gross S, Chintala S, Chanan G. Pytorch: tensors and dynamic neural networks in python with strong GPU acceleration. 2017

[53]

McCandless M, Hatcher E, Gospodnetic O. Lucene in Action: Covers Apache Lucene 3.0. Greenwich, CT: Manning Publications Co., 2010

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (502KB)

Supplementary files

Article highlights

2572

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/