Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic
Cungen CAO , Lanxi HU , Yuefei SUI
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (3) : 153401
Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic
A sequent is a pair (Γ, Δ), which is true under an assignment if either some formula in Γ is false, or some formula in Δ is true. In L3-valued propositional logic, a multisequent is a triple Δ|Θ|Γ, which is true under an assignment if either some formula in Δ has truth-value t, or some formula in Θ has truth-value m, or some formula in Γ has truth-value f. Correspondingly there is a sound and complete Gentzen deduction system G for multisequents which is monotonic. Dually, a comultisequent is a triple Δ : Θ : Γ, which is valid if there is an assignment v in which each formula in Δ has truth-value≠t, each formula in Θ has truth-value≠m, and each formula in Γ has truth-value≠f. Correspondingly there is a sound and complete Gentzen deduction system G− for co-multisequents which is nonmonotonic.
three-valued logic / multisequent / co-multisequent / monotonicity / Gentzen deduction system
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
Higher Education Press
/
| 〈 |
|
〉 |