Biologically inspired visual computing: the state of the art

Wangli HAO , Ian Max ANDOLINA , Wei WANG , Zhaoxiang ZHANG

Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (1) : 151304

PDF (875KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (1) : 151304 DOI: 10.1007/s11704-020-9001-8
REVIEW ARTICLE

Biologically inspired visual computing: the state of the art

Author information +
History +
PDF (875KB)

Abstract

Visual information is highly advantageous for the evolutionary success of almost all animals. This information is likewise critical for many computing tasks, and visual computing has achieved tremendous successes in numerous applications over the last 60 years or so. In that time, the development of visual computing has moved forwards with inspiration from biological mechanisms many times. In particular, deep neural networks were inspired by the hierarchical processing mechanisms that exist in the visual cortex of primate brains (including ours), and have achieved huge breakthroughs in many domainspecific visual tasks. In order to better understand biologically inspired visual computing, we will present a survey of the current work, and hope to offer some new avenues for rethinking visual computing and designing novel neural network architectures.

Keywords

brain-inspired / vision / neural models / intelligence / novel neural networks

Cite this article

Download citation ▾
Wangli HAO, Ian Max ANDOLINA, Wei WANG, Zhaoxiang ZHANG. Biologically inspired visual computing: the state of the art. Front. Comput. Sci., 2021, 15(1): 151304 DOI:10.1007/s11704-020-9001-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012, 1097–1125

[2]

Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition. In: Proceedings of International Conference on Learning Representations. 2015

[3]

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1–9

[4]

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770–778

[5]

He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361

[6]

Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S. Recurrent neural network based language model. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association. 2010, 1045–1048

[7]

Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization. Neural and Evolutionary Computing, 2014

[8]

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780

[9]

Sak H, Senior A, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proceedings of the 15th Annual Conference of the International Speech Communication Association. 2014, 338–342

[10]

Hariharan B, Arbelaez P, Girshick R, Malik J. Simultaneous detection and segmentation. In: Proceedings of European Conference on Computer Vision. 2014, 297–312

[11]

Hariharan B, Arbelaez P, Girshick R, Malik J. Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 447–456

[12]

Hayder Z, He X, Salzmann M. Shape-aware instance segmentation. 2017, arXiv preprint arXiv:1612.03129

[13]

Liu S, Jia J, Fidler S, Urtasun R. SGN: sequential grouping networks for instance segmentation. In: Proceedings of IEEE International European Conference on Computer Vision. 2017

[14]

Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 580–587

[15]

Girshick R. Fast R-CNN. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1440–1448

[16]

Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 91–99

[17]

Szegedy C, Erhan D. Deep neural networks for object detection. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013, 2553–2561

[18]

Erhan D, Szegedy C, Toshev A, Anguelov D. Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2155–2162

[19]

Szegedy C, Reed S, Erhan D, Anguelov D. Scalable, high-quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014

[20]

Phillips P J, Yates A N, Hu Y, Hahn C A, Noyes E, Jackson K, Cavazos J G, Jeckeln G, Ranjan R, Sankaranarayanan S, Chen J C, Castillo C D, Chellappa R, White D, O’Toole A J. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(24): 6171–6176

[21]

Fukushima K, Miyake S. Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari S, Arbib M A, eds. Competition and Cooperation in Neural Nets. Springer, Berlin, Heidelberg, 1982

[22]

Jim M, David L G. Multiclass object recognition with sparse, localized features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 11–18

[23]

Averbeck B, Latham P E, Pouget A. Neural correlations, population coding and computation. Nature Reviews Neuroscience, 2006, 7(5): 358–366

[24]

Faisal A, Selen L, Wolpert D. Noise in the nervous system. Nature Reviews Neuroscience, 2008, 9(4): 292–303

[25]

Schneidman E. Towards the design principles of neural population codes. Current Opinion in Neurobiology, 2016, 37: 133–140

[26]

Kohn A, Coencagli R, Kanitscheider I, Pouget A. Correlations and neuronal population information. Annual Review of Neuroscience, 2016, 39(1): 237–256

[27]

Echeveste R, Lengyel M. The redemption of noise: inference with neural populations. Trends in Neurosciences, 2018, 41(11): 767–770

[28]

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958

[29]

Wan L, Zeiler M, Zhang S, LeCun Y, Fergus R. Regularization of neural networks using dropconnect. In: Proceedings of International Conference on Machine Learning. 2013, 1058–1066

[30]

Huang G, Sun Y, Liu Z, Sedra D, Weinberger K Q. Deep networks with stochastic depth. In: Proceedings of European Conference on Computer Vision. 2016, 646–661

[31]

Zhao G, Wang J, Zhang Z. Random shifting for CNN: a solution to reduce information loss in down-sampling layers. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3476–3482

[32]

Ni A M, Murray S O, Horwitz G D. Object-centered shifts of receptive field positions in monkey primary visual cortex. Current Biology, 2014, 24: 1653–1658

[33]

Aguila J, Cudeiro F J, Rivadulla C. Suppression of V1 feedback produces a shift in the topographic representation of receptive fields of LGN cells by unmasking latent retinal drives. Cerebral Cortex, 2017, 27(6): 3331–3345

[34]

Wang W, Andolina IM, Lu Y, Jones H E, Sillito A M. Focal gain control of thalamic visual receptive fields by layer 6 corticothalamic feedback. Cerebral Cortex, 2016, 28(1): 267–280

[35]

Tsodyks M, Kenet T, Grinvald A, Arieli A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 1999, 286(5446): 1943–1946

[36]

Muller L, Chavane F, Reynolds J, Sejnowski T J. Cortical travelling waves: mechanisms and computational principles. Nature Reviews Neuroscience, 2018, 19(5): 255–268

[37]

Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 3856–3866

[38]

Zhu G, Zhang Z, Zhang X, Liu C. Diverse neuron type selection for convolutional neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3560–3566

[39]

Land E H. The retinex theory of color vision. Scientific American, 1977, 237(6): 108–129

[40]

Finlayson G D, Trezzi E. Shades of gray and colour constancy. In: Proceedings of the 12th Color Imaging Conference: Color Science And Engineering Systems, Technologies, Applications. Springfield: SOC Imaging Science and Technology. 2004, 37–41

[41]

Van D, Weijer J, Gevers T, Gijsenij A. Edge-based color constancy. IEEE Transactions on Image Processing, 2007, 16(9): 2207–2214

[42]

Buchsbaum G. A spatial processor model for object colour perception. Journal of the Franklin Institute, 1980, 310(1): 1–26

[43]

Vazquez-Corral J, Vanrell M, Baldrich R, Tous F. Color constancy by category correlation. IEEE Transactions on Image Processing, 2012, 1(4): 1997–2007

[44]

Gao S, Yang K, Li C, Li Y. Color constancy using double-opponency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973–1985

[45]

Yang K, Gao S, Guo C, Li C, Li Y. Boundary detection using doubleopponency and spatial sparseness constraint. IEEE Transactions on Image Processing, 2015, 24(8): 2565–2578

[46]

Li Y, Li C. A color-opponency based biological model for color constancy. I-Perception, 2011, 2(4): 384–384

[47]

Li Y, Tang X, Li C Y. Disinhibition among the extra-classical receptive field of retinal ganglion cells contributes to color constancy. In: Proceedings of Perception European Conference on Visual Perception Abstract. 2013

[48]

Gao S, Yang K, Li C, Li Y. A color constancy model with doubleopponency mechanisms. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 929–936

[49]

Gao S, Han W, Yang K, Li C, Li Y. Efficient color constancy with local surface reflectance statistics. In: Proceedings of European Conference on Computer Vision. 2014, 158–173

[50]

Yang K, Gao S, Li Y. Efficient illuminant estimation for color constancy using grey pixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2254–2263

[51]

Conway B R, Eskew R T, Martin P R, Stockman A. A tour of contemporary color vision research. Vision Research, 2018, 151: 2–6

[52]

Zhang X, Gao S, Li R, Du X, Li C, Li Y. A retinal mechanism inspired color constancy model. IEEE Transactions on Image Processing, 2016, 25(3): 1219–1232

[53]

Gao S, Li Y. A retinal mechanism based color constancy model. In: Proceedings of Chinese Conference on Pattern Recognition. 2012, 422–429

[54]

Bi G, Poo M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 1998, 18(24): 10464–10472

[55]

Bengio Y, Scellier B, Bilaniuk O, Sacramento J, Senn W. Feedforward initialization for fast inference of deep generative networks is biologically plausible. 2016, arXiv preprint arXiv:1606.01651

[56]

Scellier B, Bengio Y. Towards a biologically plausible backprop. Computing Research Repository. 2016, arXiv preprint arXiv: 1602.05179

[57]

Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, Tomas J. Learning through ferroelectric domain dynamics in solid-state synapses. Nature Communications, 2017, 8(1): 1–7

[58]

Block H, Knight J, Rosenblatt F. Analysis of a four-layer series-coupled perceptron. Reviews of Modern Physics, 1962, 34(1): 135

[59]

Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4): 193–202

[60]

Fukushima K, Miyake S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 1982, 15(6): 455–469

[61]

Hubel D, Wiesel T. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 1962, 160(1): 106–154

[62]

Hubel D, Wiesel T. Receptive fields and functional architecture in two nonstriate visual area (18 and 19) of the cat. The Journal of Neurophysiol, 1965, 28: 229–289

[63]

Fukushima K, Miyake S, Ito T. Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 5: 826–834

[64]

Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2(11): 1019–1025

[65]

LeCun Y. Huang F J, Bottou L. Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004

[66]

Wersing H, Korner E. Learning optimized features for hierarchical models of invariant recognition. Neural Computation, 2003, 15(7): 1559–1588

[67]

Hubel D, Wiesel T. Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 1959, 148(3): 574–591

[68]

Mutch J, Lowe D G. Multiclass object recognition with sparse, localized features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 11–18

[69]

Hu X, Zhang J, Li J, Zhang B. Sparsity-regularized HMAX for visual recognition. PLoS ONE, 2014, 9(1): e81813

[70]

Desimone R. Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience, 1991, 3(1): 1–8

[71]

Rolls E T. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1992, 335(1273): 11–21

[72]

Rolls E T, Tovee M J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 1995, 73(2): 713–726

[73]

Tanaka K, Saito H, Fukada Y, Moriya M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 1991, 66(1): 170–189

[74]

Rolls E T. Brain mechanisms for invariant visual recognition and learning. Behavioural Processes, 1994, 33(1–2): 113–138

[75]

Rolls E T. Learning mechanisms in the temporal lobe visual cortex. Behavioural Brain Research, 1995, 66(1–2): 177–185

[76]

Rolls E T. A neurophysiological and computational approach to the functions of the temporal lobe cortical visual areas in invariant object recognition. In: Jenkin M, Harris L, eds. Computational and Psychophysical Mechanisms of Visual Coding. Cambridge University Press, 1997, 184–220

[77]

Rolls E T. Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron, 2000, 27(2): 205–218

[78]

Wallis G, Rolls E T. A model of invariant object recognition in the visual system. Progress in Neurobiology, 1997, 51: 167–194

[79]

Rolls E T, Milward T. A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Computation, 2000, 12(11): 2547–2572

[80]

LeCun Y, Boser B, Denker J S. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541–551

[81]

LeCun Y, Bottou L, Bengio Y. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324

[82]

Khaligh-Razavi S M, Kriegeskorte N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Computational Biology, 2014, 10(11): e1003915

[83]

Cadieu C F, Hong H, Yamins D L, Pinto N, Ardila D, Solomon E A, Majaj N J, DiCarlo J J. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology, 2014, 10(12): e1003963

[84]

Kriegeskorte N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 2015, 1: 417–446

[85]

Kar K, Kubilius J, Schmidt K, Issa E B, DiCarlo J J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience, 2019, 22(6): 974–983

[86]

Nayebi A, Bear D, Kubilius J, Kar K, Ganguli S, Sussillo D, Yamins D L. Task-driven convolutional recurrent models of the visual system. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 5290–5301

[87]

Herzog M H, Clarke A M. Why vision is not both hierarchical and feedforward. Frontiers in Computational Neuroscience, 2014, 8: 135

[88]

Dayan P, Abbott L F, Abbott L. Theoretical neuroscience: computational and mathematical modeling of neural systems. The Quarterly Review of Biology, 2001, 79(1): 113

[89]

Gilbert C D, Li W. Top-down influences on visual processing. Nature Reviews Neuroscience, 2013, 14(5): 350–363

[90]

Markov N, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel M A, Giroud P, Ercsey-Ravasz M, Pilaz L J, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen D C, Kennedy H, Knoblauch K. Weight consistency specifies regularities of macaque cortical networks. Cerebral Cortex, 2011, 21(6): 1254–1272

[91]

Hochstein S, Ahissar M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 2002, 36(5): 791–804

[92]

Shi T, Liang M, Hu X. A reverse hierarchy model for predicting eye fixations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2822–2829

[93]

Mumford D. On the computational architecture of the neocortex. Biological Cybernetics, 1992, 66(3): 241–251

[94]

Lee T S, Mumford D, Romero R, Lamme V. The role of the primary visual cortex in higher level vision. Vision Research, 1998, 38(15–16): 2429–2454

[95]

Rao R P N, Ballard D H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 1999, 2(1): 79–87

[96]

Lotter W, Kreiman G, Cox D. A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. 2018, arXiv preprint arXiv:1805.10734

[97]

George D, Lehrach W, Kansky K, Mely D, Hay N, Lazaro-Gredilla M. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science, 2017, 358(6368): eaag2612

[98]

George D, Lavin A, Guntupalli J S, Mely D, Hay N, Lazaro-Gredilla M. Cortical microcircuits from a generative vision model. 2018, arXiv preprint arXiv:1808.01058

[99]

Angelucci A, Bijanzadeh M, Nurminen L, Federer F, Merlin S, Bressloff P C. Circuits and mechanisms for surround modulation in visual cortex. Annual Review of Neuroscience, 2017, 40(1): 425–451

[100]

Liang M, Hu X. Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3367–3375

[101]

Liang M, Hu X, Zhang B. Convolutional neural networks with intralayer recurrent connections for scene labeling. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 937–945

[102]

Roelfsema P R, Holtmaat A. Control of synaptic plasticity in deep cortical networks. Nature Reviews Neuroscience, 2018, 19(3): 166

[103]

Richards B A, Lillicrap T P. Can neocortical feedback alter the sign of plasticity. Nature Reviews Neuroscience, 2018, 19(10): 636

[104]

Yoo D, Park S, Lee J Y, Paek A S, So Kweon I. Attentionnet: aggregating weak directions for accurate object detection. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 2659–2667

[105]

Fang Y, Ma Z, Zhang Z. Dynamic multi-task learning with convolutional neural network. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 19–25

[106]

Hao W, Zhang Z, Guan H. Integrating both visual and audio cues for enhanced video caption. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018

[107]

Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems. 2014, 568–576

[108]

O’Reilly R C, Wyatte D R, Rohrlich J. Deep predictive learning: a comprehensive model of three visual streams. 2017, arXiv preprint arXiv:1709.04654

[109]

Hao W, Zhang Z, Guan H. CMCGAN: a uniform framework for crossmodal visual-audio mutual generation. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018

[110]

Tatler B, Hayhoe M, Land M, Ballard D. Eye guidance in natural vision: reinterpreting salience. Journal of Vision, 2011, 11(5): 5

[111]

Ognibene D, Baldassare G. Ecological active vision: four bioinspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot. IEEE Transactions on Autonomous Mental Development, 2014, 7(1): 3–25

[112]

Yang H M, Zhang X Y, Yin F, Liu C L. Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 3474–3482

[113]

Chen Y, Wang N, Zhang Z. DarkRank: accelerating deep metric learning via cross sample similarities transfer. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018

[114]

Parisi G I, Kemker R, Part J L, Kanan C, Wermter S. Continual lifelong learning with neural networks: a review. Neural Networks, 2019, 113: 54–71

[115]

Rusu A A, Rabinowitz N C, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Hadsell R. Progressive neural networks. 2016, arXiv preprint arXiv:1606.04671

[116]

Fernando C, Banarse D, Blundell C, Zwols Y, Ha D, Rusu A A, Wierstra D. Pathnet: evolution channels gradient descent in super neural networks. 2017, arXiv preprint arXiv:1701.08734

[117]

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A A, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, Hassabis D, Clopath C, Kumaran D, Hadsell R. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 2017, 114(13): 3521–3526

[118]

Lake B M, Salakhutdinov R, Tenenbaum J B. Human-level concept learning through probabilistic program induction. Science, 2015, 350(6266): 1332–1338

[119]

Atherton M. How to write the history of vision: understanding the relationship between berkeley and descartes. In: Levin D M, eds. Sites of Vision: the Discursive Construction of Sight in the History of Philosophy. Cambridge, Massachusetts: The MIT Press, 1999, 139–166

[120]

Gibson J. The Ecological Approach to Visual Perception. Boston, USA: Houghton Mifflin, 2013

[121]

Musall S, Kaufman MT, Juavinett A L, Gluf S. Churchland A K. Singletrial neural dynamics are dominated by richly varied movements. Nature Neuroscience, 2019, 22(10): 1677–1686

[122]

Stringer C, Pachitariu M, Steinmetz N, Bai Reddy C, Carandini M, Harris K D. Spontaneous behaviors drive multidimensional, brain-wide population activity. bioRxiv. 2018: 306019

[123]

Schröder S, Steinmetz N A, Krumin M, Pachitariu M, Rizzi M, Lagnado L, Harris K D, Carandini M. Retinal outputs depend on behavioural state. bioRxiv. 2019: 638049

[124]

Ahissar E, Assa E. Perception as a closed-loop convergence process. ELife, 2016, 5: e12830

[125]

Rucci M, Ahissar E, Burr D. Temporal coding of visual space. Trends in Cognitive Sciences, 2018, 22(10): 883–895

[126]

Rucci M, Victor J. The unsteady eye: an information-processing stage, not a bug. Trends in Neuroscience, 2015, 38(4): 195–206

[127]

Friston K J, Adams R A, Perrinet L, Breakspear M. Perceptions as hypotheses: saccades as experiments. Frontiers in Psychology, 2012, 3: 151

[128]

Chong E, Familiar A M, Shim W M, Reconstructing representations of dynamic visual objects in early visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(5): 1453–1458

[129]

Lawrence S J D, van Mourik T, Kok P, Koopmans P, Norris D, de Lange F. Laminar organization of working memory signals in human visual cortex. Current Biology, 2018, 28(21): 3435–3440

[130]

Petro L S, Paton A T, Muckli L. Contextual modulation of primary visual cortex by auditory signals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1714): 20160104

[131]

Williams M A, Baker C I, De Beeck H P O, Mok Shim W, Dang S, Triantafyllou C, Kanwisher N. Feedback of visual object information to foveal retinotopic cortex. Nature Neuroscience, 2008, 11(12): 1439

[132]

Wyatte D, Curran T, O’Reilly R. The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. Journal of Cognitive Neuroscience, 2012, 24(11): 2248–2261

[133]

Roelfsema P R, de Lange F P. Early visual cortex as a multiscale cognitive blackboard. Annual Review of Vision Science, 2016, 2: 131–151

[134]

Jaegle A, Mehrpour V, Rust N. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain. Current Opinion in Neurobiology, 2019, 58: 167–174

[135]

Lu Y, Yin J, Chen Z, Gong H, Liu Y, Qian L, Li X, Liu R, Andolina I M, Wang W. Revealing detail along the visual hierarchy: neural clustering preserves acuity from V1 to V4. Neuron, 2018, 98(2): 417–428

[136]

Groen I I A, Silson E H, Baker C I. Contributions of low-and highlevel properties to neural processing of visual scenes in the human brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1714): 20160102

[137]

Mackey WE, Winawer J, Curtis C E. Visual field map clusters in human frontoparietal cortex. ELife, 2017, 6: e22974

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (875KB)

Supplementary files

Article highlights

1888

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/