Biologically inspired visual computing: the state of the art

Wangli HAO, Ian Max ANDOLINA, Wei WANG, Zhaoxiang ZHANG

PDF(875 KB)
PDF(875 KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (1) : 151304. DOI: 10.1007/s11704-020-9001-8
REVIEW ARTICLE

Biologically inspired visual computing: the state of the art

Author information +
History +

Abstract

Visual information is highly advantageous for the evolutionary success of almost all animals. This information is likewise critical for many computing tasks, and visual computing has achieved tremendous successes in numerous applications over the last 60 years or so. In that time, the development of visual computing has moved forwards with inspiration from biological mechanisms many times. In particular, deep neural networks were inspired by the hierarchical processing mechanisms that exist in the visual cortex of primate brains (including ours), and have achieved huge breakthroughs in many domainspecific visual tasks. In order to better understand biologically inspired visual computing, we will present a survey of the current work, and hope to offer some new avenues for rethinking visual computing and designing novel neural network architectures.

Keywords

brain-inspired / vision / neural models / intelligence / novel neural networks

Cite this article

Download citation ▾
Wangli HAO, Ian Max ANDOLINA, Wei WANG, Zhaoxiang ZHANG. Biologically inspired visual computing: the state of the art. Front. Comput. Sci., 2021, 15(1): 151304 https://doi.org/10.1007/s11704-020-9001-8

References

[1]
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012, 1097–1125
[2]
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition. In: Proceedings of International Conference on Learning Representations. 2015
[3]
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1–9
CrossRef Google scholar
[4]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770–778
CrossRef Google scholar
[5]
He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361
CrossRef Google scholar
[6]
Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S. Recurrent neural network based language model. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association. 2010, 1045–1048
[7]
Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization. Neural and Evolutionary Computing, 2014
[8]
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780
CrossRef Google scholar
[9]
Sak H, Senior A, Beaufays F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proceedings of the 15th Annual Conference of the International Speech Communication Association. 2014, 338–342
[10]
Hariharan B, Arbelaez P, Girshick R, Malik J. Simultaneous detection and segmentation. In: Proceedings of European Conference on Computer Vision. 2014, 297–312
CrossRef Google scholar
[11]
Hariharan B, Arbelaez P, Girshick R, Malik J. Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 447–456
CrossRef Google scholar
[12]
Hayder Z, He X, Salzmann M. Shape-aware instance segmentation. 2017, arXiv preprint arXiv:1612.03129
CrossRef Google scholar
[13]
Liu S, Jia J, Fidler S, Urtasun R. SGN: sequential grouping networks for instance segmentation. In: Proceedings of IEEE International European Conference on Computer Vision. 2017
CrossRef Google scholar
[14]
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 580–587
CrossRef Google scholar
[15]
Girshick R. Fast R-CNN. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1440–1448
CrossRef Google scholar
[16]
Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 91–99
[17]
Szegedy C, Erhan D. Deep neural networks for object detection. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013, 2553–2561
[18]
Erhan D, Szegedy C, Toshev A, Anguelov D. Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2155–2162
CrossRef Google scholar
[19]
Szegedy C, Reed S, Erhan D, Anguelov D. Scalable, high-quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014
[20]
Phillips P J, Yates A N, Hu Y, Hahn C A, Noyes E, Jackson K, Cavazos J G, Jeckeln G, Ranjan R, Sankaranarayanan S, Chen J C, Castillo C D, Chellappa R, White D, O’Toole A J. Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(24): 6171–6176
CrossRef Google scholar
[21]
Fukushima K, Miyake S. Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari S, Arbib M A, eds. Competition and Cooperation in Neural Nets. Springer, Berlin, Heidelberg, 1982
CrossRef Google scholar
[22]
Jim M, David L G. Multiclass object recognition with sparse, localized features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 11–18
[23]
Averbeck B, Latham P E, Pouget A. Neural correlations, population coding and computation. Nature Reviews Neuroscience, 2006, 7(5): 358–366
CrossRef Google scholar
[24]
Faisal A, Selen L, Wolpert D. Noise in the nervous system. Nature Reviews Neuroscience, 2008, 9(4): 292–303
CrossRef Google scholar
[25]
Schneidman E. Towards the design principles of neural population codes. Current Opinion in Neurobiology, 2016, 37: 133–140
CrossRef Google scholar
[26]
Kohn A, Coencagli R, Kanitscheider I, Pouget A. Correlations and neuronal population information. Annual Review of Neuroscience, 2016, 39(1): 237–256
CrossRef Google scholar
[27]
Echeveste R, Lengyel M. The redemption of noise: inference with neural populations. Trends in Neurosciences, 2018, 41(11): 767–770
CrossRef Google scholar
[28]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958
[29]
Wan L, Zeiler M, Zhang S, LeCun Y, Fergus R. Regularization of neural networks using dropconnect. In: Proceedings of International Conference on Machine Learning. 2013, 1058–1066
[30]
Huang G, Sun Y, Liu Z, Sedra D, Weinberger K Q. Deep networks with stochastic depth. In: Proceedings of European Conference on Computer Vision. 2016, 646–661
CrossRef Google scholar
[31]
Zhao G, Wang J, Zhang Z. Random shifting for CNN: a solution to reduce information loss in down-sampling layers. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3476–3482
CrossRef Google scholar
[32]
Ni A M, Murray S O, Horwitz G D. Object-centered shifts of receptive field positions in monkey primary visual cortex. Current Biology, 2014, 24: 1653–1658
CrossRef Google scholar
[33]
Aguila J, Cudeiro F J, Rivadulla C. Suppression of V1 feedback produces a shift in the topographic representation of receptive fields of LGN cells by unmasking latent retinal drives. Cerebral Cortex, 2017, 27(6): 3331–3345
CrossRef Google scholar
[34]
Wang W, Andolina IM, Lu Y, Jones H E, Sillito A M. Focal gain control of thalamic visual receptive fields by layer 6 corticothalamic feedback. Cerebral Cortex, 2016, 28(1): 267–280
CrossRef Google scholar
[35]
Tsodyks M, Kenet T, Grinvald A, Arieli A. Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 1999, 286(5446): 1943–1946
CrossRef Google scholar
[36]
Muller L, Chavane F, Reynolds J, Sejnowski T J. Cortical travelling waves: mechanisms and computational principles. Nature Reviews Neuroscience, 2018, 19(5): 255–268
CrossRef Google scholar
[37]
Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 3856–3866
[38]
Zhu G, Zhang Z, Zhang X, Liu C. Diverse neuron type selection for convolutional neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 3560–3566
CrossRef Google scholar
[39]
Land E H. The retinex theory of color vision. Scientific American, 1977, 237(6): 108–129
CrossRef Google scholar
[40]
Finlayson G D, Trezzi E. Shades of gray and colour constancy. In: Proceedings of the 12th Color Imaging Conference: Color Science And Engineering Systems, Technologies, Applications. Springfield: SOC Imaging Science and Technology. 2004, 37–41
[41]
Van D, Weijer J, Gevers T, Gijsenij A. Edge-based color constancy. IEEE Transactions on Image Processing, 2007, 16(9): 2207–2214
CrossRef Google scholar
[42]
Buchsbaum G. A spatial processor model for object colour perception. Journal of the Franklin Institute, 1980, 310(1): 1–26
CrossRef Google scholar
[43]
Vazquez-Corral J, Vanrell M, Baldrich R, Tous F. Color constancy by category correlation. IEEE Transactions on Image Processing, 2012, 1(4): 1997–2007
CrossRef Google scholar
[44]
Gao S, Yang K, Li C, Li Y. Color constancy using double-opponency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 1973–1985
CrossRef Google scholar
[45]
Yang K, Gao S, Guo C, Li C, Li Y. Boundary detection using doubleopponency and spatial sparseness constraint. IEEE Transactions on Image Processing, 2015, 24(8): 2565–2578
CrossRef Google scholar
[46]
Li Y, Li C. A color-opponency based biological model for color constancy. I-Perception, 2011, 2(4): 384–384
CrossRef Google scholar
[47]
Li Y, Tang X, Li C Y. Disinhibition among the extra-classical receptive field of retinal ganglion cells contributes to color constancy. In: Proceedings of Perception European Conference on Visual Perception Abstract. 2013
[48]
Gao S, Yang K, Li C, Li Y. A color constancy model with doubleopponency mechanisms. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 929–936
CrossRef Google scholar
[49]
Gao S, Han W, Yang K, Li C, Li Y. Efficient color constancy with local surface reflectance statistics. In: Proceedings of European Conference on Computer Vision. 2014, 158–173
CrossRef Google scholar
[50]
Yang K, Gao S, Li Y. Efficient illuminant estimation for color constancy using grey pixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 2254–2263
CrossRef Google scholar
[51]
Conway B R, Eskew R T, Martin P R, Stockman A. A tour of contemporary color vision research. Vision Research, 2018, 151: 2–6
CrossRef Google scholar
[52]
Zhang X, Gao S, Li R, Du X, Li C, Li Y. A retinal mechanism inspired color constancy model. IEEE Transactions on Image Processing, 2016, 25(3): 1219–1232
CrossRef Google scholar
[53]
Gao S, Li Y. A retinal mechanism based color constancy model. In: Proceedings of Chinese Conference on Pattern Recognition. 2012, 422–429
CrossRef Google scholar
[54]
Bi G, Poo M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 1998, 18(24): 10464–10472
CrossRef Google scholar
[55]
Bengio Y, Scellier B, Bilaniuk O, Sacramento J, Senn W. Feedforward initialization for fast inference of deep generative networks is biologically plausible. 2016, arXiv preprint arXiv:1606.01651
[56]
Scellier B, Bengio Y. Towards a biologically plausible backprop. Computing Research Repository. 2016, arXiv preprint arXiv: 1602.05179
[57]
Boyn S, Grollier J, Lecerf G, Xu B, Locatelli N, Fusil S, Tomas J. Learning through ferroelectric domain dynamics in solid-state synapses. Nature Communications, 2017, 8(1): 1–7
CrossRef Google scholar
[58]
Block H, Knight J, Rosenblatt F. Analysis of a four-layer series-coupled perceptron. Reviews of Modern Physics, 1962, 34(1): 135
CrossRef Google scholar
[59]
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4): 193–202
CrossRef Google scholar
[60]
Fukushima K, Miyake S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, 1982, 15(6): 455–469
CrossRef Google scholar
[61]
Hubel D, Wiesel T. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 1962, 160(1): 106–154
CrossRef Google scholar
[62]
Hubel D, Wiesel T. Receptive fields and functional architecture in two nonstriate visual area (18 and 19) of the cat. The Journal of Neurophysiol, 1965, 28: 229–289
CrossRef Google scholar
[63]
Fukushima K, Miyake S, Ito T. Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 5: 826–834
CrossRef Google scholar
[64]
Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2(11): 1019–1025
CrossRef Google scholar
[65]
LeCun Y. Huang F J, Bottou L. Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004
[66]
Wersing H, Korner E. Learning optimized features for hierarchical models of invariant recognition. Neural Computation, 2003, 15(7): 1559–1588
CrossRef Google scholar
[67]
Hubel D, Wiesel T. Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 1959, 148(3): 574–591
CrossRef Google scholar
[68]
Mutch J, Lowe D G. Multiclass object recognition with sparse, localized features. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 11–18
[69]
Hu X, Zhang J, Li J, Zhang B. Sparsity-regularized HMAX for visual recognition. PLoS ONE, 2014, 9(1): e81813
CrossRef Google scholar
[70]
Desimone R. Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience, 1991, 3(1): 1–8
CrossRef Google scholar
[71]
Rolls E T. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1992, 335(1273): 11–21
CrossRef Google scholar
[72]
Rolls E T, Tovee M J. Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 1995, 73(2): 713–726
CrossRef Google scholar
[73]
Tanaka K, Saito H, Fukada Y, Moriya M. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology, 1991, 66(1): 170–189
CrossRef Google scholar
[74]
Rolls E T. Brain mechanisms for invariant visual recognition and learning. Behavioural Processes, 1994, 33(1–2): 113–138
CrossRef Google scholar
[75]
Rolls E T. Learning mechanisms in the temporal lobe visual cortex. Behavioural Brain Research, 1995, 66(1–2): 177–185
CrossRef Google scholar
[76]
Rolls E T. A neurophysiological and computational approach to the functions of the temporal lobe cortical visual areas in invariant object recognition. In: Jenkin M, Harris L, eds. Computational and Psychophysical Mechanisms of Visual Coding. Cambridge University Press, 1997, 184–220
[77]
Rolls E T. Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron, 2000, 27(2): 205–218
CrossRef Google scholar
[78]
Wallis G, Rolls E T. A model of invariant object recognition in the visual system. Progress in Neurobiology, 1997, 51: 167–194
CrossRef Google scholar
[79]
Rolls E T, Milward T. A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures. Neural Computation, 2000, 12(11): 2547–2572
CrossRef Google scholar
[80]
LeCun Y, Boser B, Denker J S. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541–551
CrossRef Google scholar
[81]
LeCun Y, Bottou L, Bengio Y. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324
CrossRef Google scholar
[82]
Khaligh-Razavi S M, Kriegeskorte N. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Computational Biology, 2014, 10(11): e1003915
CrossRef Google scholar
[83]
Cadieu C F, Hong H, Yamins D L, Pinto N, Ardila D, Solomon E A, Majaj N J, DiCarlo J J. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Computational Biology, 2014, 10(12): e1003963
CrossRef Google scholar
[84]
Kriegeskorte N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 2015, 1: 417–446
CrossRef Google scholar
[85]
Kar K, Kubilius J, Schmidt K, Issa E B, DiCarlo J J. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience, 2019, 22(6): 974–983
CrossRef Google scholar
[86]
Nayebi A, Bear D, Kubilius J, Kar K, Ganguli S, Sussillo D, Yamins D L. Task-driven convolutional recurrent models of the visual system. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018, 5290–5301
[87]
Herzog M H, Clarke A M. Why vision is not both hierarchical and feedforward. Frontiers in Computational Neuroscience, 2014, 8: 135
CrossRef Google scholar
[88]
Dayan P, Abbott L F, Abbott L. Theoretical neuroscience: computational and mathematical modeling of neural systems. The Quarterly Review of Biology, 2001, 79(1): 113
[89]
Gilbert C D, Li W. Top-down influences on visual processing. Nature Reviews Neuroscience, 2013, 14(5): 350–363
CrossRef Google scholar
[90]
Markov N, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel M A, Giroud P, Ercsey-Ravasz M, Pilaz L J, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen D C, Kennedy H, Knoblauch K. Weight consistency specifies regularities of macaque cortical networks. Cerebral Cortex, 2011, 21(6): 1254–1272
CrossRef Google scholar
[91]
Hochstein S, Ahissar M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 2002, 36(5): 791–804
CrossRef Google scholar
[92]
Shi T, Liang M, Hu X. A reverse hierarchy model for predicting eye fixations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2822–2829
CrossRef Google scholar
[93]
Mumford D. On the computational architecture of the neocortex. Biological Cybernetics, 1992, 66(3): 241–251
CrossRef Google scholar
[94]
Lee T S, Mumford D, Romero R, Lamme V. The role of the primary visual cortex in higher level vision. Vision Research, 1998, 38(15–16): 2429–2454
CrossRef Google scholar
[95]
Rao R P N, Ballard D H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 1999, 2(1): 79–87
CrossRef Google scholar
[96]
Lotter W, Kreiman G, Cox D. A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception. 2018, arXiv preprint arXiv:1805.10734
[97]
George D, Lehrach W, Kansky K, Mely D, Hay N, Lazaro-Gredilla M. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science, 2017, 358(6368): eaag2612
CrossRef Google scholar
[98]
George D, Lavin A, Guntupalli J S, Mely D, Hay N, Lazaro-Gredilla M. Cortical microcircuits from a generative vision model. 2018, arXiv preprint arXiv:1808.01058
CrossRef Google scholar
[99]
Angelucci A, Bijanzadeh M, Nurminen L, Federer F, Merlin S, Bressloff P C. Circuits and mechanisms for surround modulation in visual cortex. Annual Review of Neuroscience, 2017, 40(1): 425–451
CrossRef Google scholar
[100]
Liang M, Hu X. Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3367–3375
[101]
Liang M, Hu X, Zhang B. Convolutional neural networks with intralayer recurrent connections for scene labeling. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. 2015, 937–945
[102]
Roelfsema P R, Holtmaat A. Control of synaptic plasticity in deep cortical networks. Nature Reviews Neuroscience, 2018, 19(3): 166
CrossRef Google scholar
[103]
Richards B A, Lillicrap T P. Can neocortical feedback alter the sign of plasticity. Nature Reviews Neuroscience, 2018, 19(10): 636
CrossRef Google scholar
[104]
Yoo D, Park S, Lee J Y, Paek A S, So Kweon I. Attentionnet: aggregating weak directions for accurate object detection. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 2659–2667
CrossRef Google scholar
[105]
Fang Y, Ma Z, Zhang Z. Dynamic multi-task learning with convolutional neural network. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017, 19–25
CrossRef Google scholar
[106]
Hao W, Zhang Z, Guan H. Integrating both visual and audio cues for enhanced video caption. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018
[107]
Simonyan K, Zisserman A. Two-stream convolutional networks for action recognition in videos. In: Proceedings of Advances in Neural Information Processing Systems. 2014, 568–576
[108]
O’Reilly R C, Wyatte D R, Rohrlich J. Deep predictive learning: a comprehensive model of three visual streams. 2017, arXiv preprint arXiv:1709.04654
[109]
Hao W, Zhang Z, Guan H. CMCGAN: a uniform framework for crossmodal visual-audio mutual generation. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018
[110]
Tatler B, Hayhoe M, Land M, Ballard D. Eye guidance in natural vision: reinterpreting salience. Journal of Vision, 2011, 11(5): 5
CrossRef Google scholar
[111]
Ognibene D, Baldassare G. Ecological active vision: four bioinspired principles to integrate bottom-up and adaptive top-down attention tested with a simple camera-arm robot. IEEE Transactions on Autonomous Mental Development, 2014, 7(1): 3–25
CrossRef Google scholar
[112]
Yang H M, Zhang X Y, Yin F, Liu C L. Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 3474–3482
CrossRef Google scholar
[113]
Chen Y, Wang N, Zhang Z. DarkRank: accelerating deep metric learning via cross sample similarities transfer. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018
[114]
Parisi G I, Kemker R, Part J L, Kanan C, Wermter S. Continual lifelong learning with neural networks: a review. Neural Networks, 2019, 113: 54–71
CrossRef Google scholar
[115]
Rusu A A, Rabinowitz N C, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K, Hadsell R. Progressive neural networks. 2016, arXiv preprint arXiv:1606.04671
[116]
Fernando C, Banarse D, Blundell C, Zwols Y, Ha D, Rusu A A, Wierstra D. Pathnet: evolution channels gradient descent in super neural networks. 2017, arXiv preprint arXiv:1701.08734
[117]
Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A A, Milan K, Quan J, Ramalho T, Grabska-Barwinska A, Hassabis D, Clopath C, Kumaran D, Hadsell R. Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 2017, 114(13): 3521–3526
CrossRef Google scholar
[118]
Lake B M, Salakhutdinov R, Tenenbaum J B. Human-level concept learning through probabilistic program induction. Science, 2015, 350(6266): 1332–1338
CrossRef Google scholar
[119]
Atherton M. How to write the history of vision: understanding the relationship between berkeley and descartes. In: Levin D M, eds. Sites of Vision: the Discursive Construction of Sight in the History of Philosophy. Cambridge, Massachusetts: The MIT Press, 1999, 139–166
[120]
Gibson J. The Ecological Approach to Visual Perception. Boston, USA: Houghton Mifflin, 2013
CrossRef Google scholar
[121]
Musall S, Kaufman MT, Juavinett A L, Gluf S. Churchland A K. Singletrial neural dynamics are dominated by richly varied movements. Nature Neuroscience, 2019, 22(10): 1677–1686
CrossRef Google scholar
[122]
Stringer C, Pachitariu M, Steinmetz N, Bai Reddy C, Carandini M, Harris K D. Spontaneous behaviors drive multidimensional, brain-wide population activity. bioRxiv. 2018: 306019
CrossRef Google scholar
[123]
Schröder S, Steinmetz N A, Krumin M, Pachitariu M, Rizzi M, Lagnado L, Harris K D, Carandini M. Retinal outputs depend on behavioural state. bioRxiv. 2019: 638049
CrossRef Google scholar
[124]
Ahissar E, Assa E. Perception as a closed-loop convergence process. ELife, 2016, 5: e12830
CrossRef Google scholar
[125]
Rucci M, Ahissar E, Burr D. Temporal coding of visual space. Trends in Cognitive Sciences, 2018, 22(10): 883–895
CrossRef Google scholar
[126]
Rucci M, Victor J. The unsteady eye: an information-processing stage, not a bug. Trends in Neuroscience, 2015, 38(4): 195–206
CrossRef Google scholar
[127]
Friston K J, Adams R A, Perrinet L, Breakspear M. Perceptions as hypotheses: saccades as experiments. Frontiers in Psychology, 2012, 3: 151
CrossRef Google scholar
[128]
Chong E, Familiar A M, Shim W M, Reconstructing representations of dynamic visual objects in early visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(5): 1453–1458
CrossRef Google scholar
[129]
Lawrence S J D, van Mourik T, Kok P, Koopmans P, Norris D, de Lange F. Laminar organization of working memory signals in human visual cortex. Current Biology, 2018, 28(21): 3435–3440
CrossRef Google scholar
[130]
Petro L S, Paton A T, Muckli L. Contextual modulation of primary visual cortex by auditory signals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1714): 20160104
CrossRef Google scholar
[131]
Williams M A, Baker C I, De Beeck H P O, Mok Shim W, Dang S, Triantafyllou C, Kanwisher N. Feedback of visual object information to foveal retinotopic cortex. Nature Neuroscience, 2008, 11(12): 1439
CrossRef Google scholar
[132]
Wyatte D, Curran T, O’Reilly R. The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded. Journal of Cognitive Neuroscience, 2012, 24(11): 2248–2261
CrossRef Google scholar
[133]
Roelfsema P R, de Lange F P. Early visual cortex as a multiscale cognitive blackboard. Annual Review of Vision Science, 2016, 2: 131–151
CrossRef Google scholar
[134]
Jaegle A, Mehrpour V, Rust N. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain. Current Opinion in Neurobiology, 2019, 58: 167–174
CrossRef Google scholar
[135]
Lu Y, Yin J, Chen Z, Gong H, Liu Y, Qian L, Li X, Liu R, Andolina I M, Wang W. Revealing detail along the visual hierarchy: neural clustering preserves acuity from V1 to V4. Neuron, 2018, 98(2): 417–428
CrossRef Google scholar
[136]
Groen I I A, Silson E H, Baker C I. Contributions of low-and highlevel properties to neural processing of visual scenes in the human brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372(1714): 20160102
CrossRef Google scholar
[137]
Mackey WE, Winawer J, Curtis C E. Visual field map clusters in human frontoparietal cortex. ELife, 2017, 6: e22974
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(875 KB)

Accesses

Citations

Detail

Sections
Recommended

/