Protein interaction networks: centrality, modularity, dynamics, and applications

Xiangmao MENG, Wenkai LI, Xiaoqing PENG, Yaohang LI, Min LI

PDF(783 KB)
PDF(783 KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156902. DOI: 10.1007/s11704-020-8179-0
REVIEW ARTICLE

Protein interaction networks: centrality, modularity, dynamics, and applications

Author information +
History +

Abstract

In the post-genomic era, proteomics has achieved significant theoretical and practical advances with the development of high-throughput technologies. Especially the rapid accumulation of protein-protein interactions (PPIs) provides a foundation for constructing protein interaction networks (PINs), which can furnish a new perspective for understanding cellular organizations, processes, and functions at network level. In this paper, we present a comprehensive survey on three main characteristics of PINs: centrality, modularity, and dynamics. 1) Different centrality measures, which are used to calculate the importance of proteins, are summarized based on the structural characteristics of PINs or on the basis of its integrated biological information; 2) Different modularity definitions and various clustering algorithms for predicting protein complexes or identifying functional modules are introduced; 3) The dynamics of proteins, PPIs and sub-networks are discussed, respectively. Finally, the main applications of PINs in the complex diseases are reviewed, and the challenges and future research directions are also discussed.

Keywords

protein interaction networks / network centrality / modularity / dynamics / complex diseases

Cite this article

Download citation ▾
Xiangmao MENG, Wenkai LI, Xiaoqing PENG, Yaohang LI, Min LI. Protein interaction networks: centrality, modularity, dynamics, and applications. Front. Comput. Sci., 2021, 15(6): 156902 https://doi.org/10.1007/s11704-020-8179-0

References

[1]
Kumar A, Snyder M. Proteomics: protein complexes take the bait. Nature, 2002, 415(6868): 123–124
CrossRef Google scholar
[2]
Von Mering C, Krause R, Snel B, Cornell M, Oliver S G, Fields S, Bork P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002, 417(6887): 399–403
CrossRef Google scholar
[3]
Zeng M, Zhang F, Wu F X, L i Y, Wang J, Li M. Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics, 2020, 36(4): 1114–1120
CrossRef Google scholar
[4]
Chen Y C, Rajagopala S V, Stellberger T, Uetz P. Exhaustive benchmarking of the yeast two-hybrid system. Nature Methods, 2010, 7(9): 667
CrossRef Google scholar
[5]
Morris J H, Knudsen G M, Verschueren E, Johnson J R, Cimermancic P, Greninger A L, Pico A R. Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nature Protocols, 2014, 9(11): 2539
CrossRef Google scholar
[6]
Hu B, Petela N, Kurze A, Chan K L, Chapard C, Nasmyth K. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Research, 2015, 43(20): e132
CrossRef Google scholar
[7]
Wang R, Liu G, Wang C. Identifying protein complexes based on an edge weight algorithm and core-attachment structure. BMC Bioinformatics, 2019, 20(1): 471
CrossRef Google scholar
[8]
Zhu Y, Li Y, Liu J, Qin L, Yu J X. Discovering large conserved functional components in global network alignment by graph matching. BMC Genomics, 2018, 19(7): 670
CrossRef Google scholar
[9]
Janwa H, Massey S E, Velev J, Mishra B. On the origin of biomolecular networks. Frontiers in Genetics, 2019, 10: 240
CrossRef Google scholar
[10]
Davis D, Yaveroˇglu Ö N, Malod-Dognin N, Stojmirovic A, Pržulj N. Topology-function conservation in protein-protein interaction networks. Bioinformatics, 2015, 31(10): 1632
CrossRef Google scholar
[11]
Li G, Li M, Peng W, Li Y, Pan Y, Wang J. A novel extended Pareto Optimality Consensus model for predicting essential proteins. Journal of Theoretical Biology, 2019, 480: 141–149
CrossRef Google scholar
[12]
Liu C, Ma Y, Zhao J, Nussinov R, Zhang Y C, Cheng F, Zhang Z K. Computational network biology: data, models, and applications. Physics Reports, 2020, 846: 1–66
CrossRef Google scholar
[13]
Taylor N R. Small world network strategies for studying protein structures and binding. Computational and Structural Biotechnology Journal, 2013, 5(6): e201302006
CrossRef Google scholar
[14]
Leventhal G E, Hill A L, Nowak M A, Bonhoeffer S. Evolution and emergence of infectious diseases in theoretical and real-world networks. Nature, 2015, 6: 6101
CrossRef Google scholar
[15]
Barabasi A L, Oltvai Z N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 2004, 5(2): 101–113
CrossRef Google scholar
[16]
Nacher J C, Hayashida M, Akutsu T. Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs. BioSystems, 2009, 95(2): 155–159
CrossRef Google scholar
[17]
Alanis-Lobato G, Mier P, Andrade-Navarro M. The latent geometry of the human protein interaction network. Bioinformatics, 2018, 34(16): 2826–2834
CrossRef Google scholar
[18]
Han J D J, Bertin N, Hao T, Goldberg D S, Berriz G F, Zhang L V, Dupuy D, Walhout A J M, Cusick M E, Roth F P, Vidal M. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004, 430(6995): 88–93
CrossRef Google scholar
[19]
Komurov K, White M. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Molecular Systems Biology, 2007, 3(1): 110
CrossRef Google scholar
[20]
Mitra K, Carvunis A R, Ramesh S K, Ideker T. Integrative approaches for finding modular structure in biological networks. Nature Reviews Genetics, 2013, 14(10): 719–732
CrossRef Google scholar
[21]
Li D, Li J, Ouyang S, Wang J, Wu S, Wan P, Zhu Y, Xu X ,He F. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness. Proteomics, 2006, 6(2): 456–461
CrossRef Google scholar
[22]
Pereira-Leal J B, Levy E D, Teichmann S A. The origins and evolution of functional modules: lessons from protein complexes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2006, 361(1467): 507–517
CrossRef Google scholar
[23]
Jeong H, Mason S P, Barabási A L, Oltvai Z N. Lethality and centrality in protein networks. Nature, 2001, 411(6833): 41–44
CrossRef Google scholar
[24]
Estrada E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics, 2006, 6(1): 35–40
CrossRef Google scholar
[25]
Joy M P, Brock A, Ingber D E, Huang S. High-betweenness proteins in the yeast protein interaction network. BioMed Research International, 2005, 2005(2): 96–103
CrossRef Google scholar
[26]
Estrada E, Rodríguez-Velázquez J A. Subgraph centrality in complex networks. Physical Review E, 2005, 71(5): 056103
CrossRef Google scholar
[27]
Li M, Wang J, Chen X, Wang H, Pan Y. A local average connectivitybased method for identifying essential proteins from the network level. Computational Biology and Chemistry, 2011, 35(3): 143–150
CrossRef Google scholar
[28]
Wang J, Li M, Wang H, Pan Y. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1070–1080
CrossRef Google scholar
[29]
Liu Y, Liang H, Zou Q, He Z. Significance-based essential protein discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.3004364
CrossRef Google scholar
[30]
Zeng M, Li M, Fei Z, Wu F X, Li Y, Pan Y, Wang J. A deep learning framework for identifying essential proteins by integrating multiple types of biological information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, DOI: 10.1109/TCBB.2019.2897679
CrossRef Google scholar
[31]
Li G, Li M, Wang J, Wu J, Wu F X, Pan Y. Predicting essential proteins based on subcellular localization, orthology and PPI networks. BMC Bioinformatics, 2016, 17(8): 279
CrossRef Google scholar
[32]
Helden J V. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics, 2006, 7(1): 488
CrossRef Google scholar
[33]
Liu W, Ma L, Jeon B, Chen L, Chen B. A network Hierarchy-Based method for functional module detection in protein-protein interaction networks. Journal of Theoretical Biology, 2018, 455: 26–38
CrossRef Google scholar
[34]
Xiang J, Zhang Y, Li J M, Li H J, Li M. Identifying multi-scale communities in networks by asymptotic surprise. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(3): 033403
CrossRef Google scholar
[35]
Li M, Wu X, Wang J, Pan Y. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics, 2012, 13(1): 109
CrossRef Google scholar
[36]
Wang J, Peng X, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics, 2013, 13(2): 301–312
CrossRef Google scholar
[37]
Alon U. Biological networks: the tinkerer as an engineer. Science, 2003, 301(5641): 1866–1867
CrossRef Google scholar
[38]
Zhang F, Song H, Zeng M, Li Y, Kurgan L, Li M. DeepFunc: a deep learning framework for accurate prediction of protein functions from protein sequences and interactions. Proteomics, 2019, 19(12): 1900019
CrossRef Google scholar
[39]
Wang Y, You Z, Li L, Chen Z. A survey of current trends in computational predictions of protein-protein interactions. Frontiers of Computer Science, 2020, 14(4): 144901
CrossRef Google scholar
[40]
Nourani E, Khunjush F, Durmuş S. Computational approaches for prediction of pathogen-host protein-protein interactions. Frontiers in Microbiology, 2015, 6: 94
CrossRef Google scholar
[41]
Li X, Li W, Zeng M, Zheng R, Li M. Network-based methods for predicting essential genes or proteins: a survey. Briefings in Bioinformatics, 2020, 21(2): 566–583
CrossRef Google scholar
[42]
Keskin O, Tuncbag N, Gursoy A. Predicting protein-protein interactions from the molecular to the proteome level. Chemical Reviews, 2016, 116(8): 4884–4909
CrossRef Google scholar
[43]
Li T, Wernersson R, Hansen R B, Horn H, Mercer J, Slodkowicz G, Workman C T, Rigina O, Rapacki K, Særfeldt H H, Brunak S, Jensen T S, Lage K. A scored human protein-protein interaction network to catalyze genomic interpretation. Nature Methods, 2017, 14: 61–64
CrossRef Google scholar
[44]
Prasad T S K, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan D S, Sebastian A, Rani S, Ray S, Kishore C J H, Kanth S, Ahmed M, Kashyap M K, Mohmood R, Ramachandra Y L, Krishna V, Rahiman B A, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human protein reference database 2009 update. Nucleic Acids Research, 2008, 37(suppl 1): D767–D772
CrossRef Google scholar
[45]
Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Research, 2015, 44(D1): D536–D541
CrossRef Google scholar
[46]
Cowley M J, Pinese M, Kassahn K S, Waddell N, Pearson J V, Grimmond S M, Biankin A V, Hautaniemi S, Wu J. PINA v2. 0: mining interactome modules. Nucleic Acids Research, 2011, 40(D1): D862–D865
CrossRef Google scholar
[47]
Das J, Yu H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Systems Biology, 2012, 6(1): 92
CrossRef Google scholar
[48]
Razick S, Magklaras G, Donaldson I M. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics, 2008, 9(1): 405
CrossRef Google scholar
[49]
Salwinski L, Miller C S, Smith A J, Pettit F K, Bowie J U, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Research, 2004, 32(suppl 1): D449–D451
CrossRef Google scholar
[50]
Luck K, Kim D K, Lambourne L, Spirohn K, Begg B E, et al. A reference map of the human binary protein interactome. Nature, 2020, 580(7803): 402–408
CrossRef Google scholar
[51]
Szklarczyk D, Gable A L, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva N T, Morris J H, Bork P, Jensen L S. Mering C v. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019, 47(D1): D607–D613
CrossRef Google scholar
[52]
Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez R C, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct molecular interaction database in 2012. Nucleic Acids Research, 2012, 40(D1): D841–D846
CrossRef Google scholar
[53]
Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes H-W, Ruepp A, Frishman D. The MIPS mammalian protein-protein interaction database. Bioinformatics, 2005, 21(6): 832–834
CrossRef Google scholar
[54]
Oughtred R, Stark C, Breitkreutz B J, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Research, 2019, 47(D1): D529–D541
CrossRef Google scholar
[55]
Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos G A. A guide to conquer the biological network era using graph theory. Frontiers in Bioengineering and Biotechnology, 2020, 8: 34
CrossRef Google scholar
[56]
Li M, Zheng R, Zhang H, Wang J, Pan Y. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods, 2014, 67(3): 325–333
CrossRef Google scholar
[57]
Li M, Chen J, Wang J, Hu B, Chen G. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics, 2008, 9(1): 398
CrossRef Google scholar
[58]
Peng W, Wang J, Zhao B, Wang L. Identification of protein complexes using weighted PageRank-Nibble algorithm and core-attachment structure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(1): 179–192
CrossRef Google scholar
[59]
Lv Z, Ao C, Zou Q. Protein function prediction: from traditional classifier to deep learning. Proteomics, 2019, 19(14): 1900119
CrossRef Google scholar
[60]
Zhang F, Song H, Zeng M, Wu F X, Li Y, Pan Y, Li M. A deep learning framework for gene ontology annotations with sequence-and network- based information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.2968882
CrossRef Google scholar
[61]
Ganegoda G U, Wang J X, Wu F X, Li M. Prediction of disease genes using tissue-specified gene-gene network. BMC Systems Biology, 2014, 8(3): S3
CrossRef Google scholar
[62]
Wei P J, Wu F X, Xia J, Su Y, Wang J, Zheng C H. Prioritizing cancer genes based on an improved random walk method. Frontiers in Genetics, 2020, 11: 377
CrossRef Google scholar
[63]
Ding Y, Tang J, Guo F. Identification of drug-target interactions via dual laplacian regularized least squares with multiple kernel fusion. Knowledge-Based Systems, 2020, 204: 106254
CrossRef Google scholar
[64]
Zhao T, Hu Y, Valsdottir L R, Zang T, Peng J. Identifying drug-target interactions based on graph convolutional network and deep neural network. Briefings in Bioinformatics, 2020, DOI: 10.1093/bib/bbaa044
CrossRef Google scholar
[65]
Yu L, Zhao J, Gao L. Predicting potential drugs for breast cancer based on miRNA and tissue specificity. International Journal of Biological Sciences, 2018, 14(8): 971
CrossRef Google scholar
[66]
Li X, Xiang J, Wang J, Li J, Wu F X, Li M. FUNMarker: fusion networkbased method to identify prognostic and heterogeneous breast cancer biomarkers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.2973148
CrossRef Google scholar
[67]
Liu X, Chang X, Leng S, Tang H, Aihara K, Chen L. Detection for disease tipping points by landscape dynamic network biomarkers. National Science Review, 2019, 6(4): 775–785
CrossRef Google scholar
[68]
Liu R, Chen P, Chen L. Single-sample landscape entropy reveals the imminent phase transition during disease progression. Bioinformatics, 2020, 36(5): 1522–1532
CrossRef Google scholar
[69]
Carneiro D G, Clarke T, Davies C C, Bailey D. Identifying novel protein interactions: proteomic methods, optimisation approaches and data analysis pipelines. Methods, 2015, 95: 46–54
CrossRef Google scholar
[70]
Srihari S, Yong C H, Wong L. Computational Prediction of Protein Complexes from Protein Interaction Networks. Williston: Morgan & Claypool, 2017
CrossRef Google scholar
[71]
Wang J, Peng X, Peng W, Wu F X. Dynamic protein interaction network construction and applications. Proteomics, 2014, 14(4–5): 338–352
CrossRef Google scholar
[72]
Li M, Meng X, Zheng R, Wu F X, Li Y, Pan Y, Wang J. Identification of protein complexes by using a spatial and temporal active protein interaction network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(3): 817–827
CrossRef Google scholar
[73]
Xiao Q, Luo P, Li M, Wang J, Wu F X. A novel core-attachment-based method to identify dynamic protein complexes based on gene expression profiles and PPI networks. Proteomics, 2019, 19(5): 1800129
CrossRef Google scholar
[74]
Wang R, Wang C, Liu G. A novel graph clustering method with a greedy heuristic search algorithm for mining protein complexes from dynamic and static PPI networks. Information Sciences, 2020, 522: 275–298
CrossRef Google scholar
[75]
Tang X, Wang J, Liu B, Li M, Chen G, Pan Y. A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics, 2011, 12(1): 1–15
CrossRef Google scholar
[76]
Tang X, Wang J, Zhong J, Pan Y. Predicting essential proteins based on weighted degree centrality. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(2): 407–418
CrossRef Google scholar
[77]
Lin C Y, Chin C H, Wu H H, Chen S H, Ko M T. Hubba: hub objects analyzer-a framework of interactome hubs identification for network biology. Nucleic Acids Research, 2008, 36(suppl 2): W438–W443
CrossRef Google scholar
[78]
Li M, Zhang H, Wang J, Pan Y. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Systems Biology, 2012, 6(1): 15
CrossRef Google scholar
[79]
He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genetics, 2006, 2(6): e88
CrossRef Google scholar
[80]
Zotenko E, Mestre J, O’Leary D P, Przytycka T M. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Computational Biology, 2008, 4(8): e1000140
CrossRef Google scholar
[81]
Kim P M, Lu L J, Xia Y, Gerstein MB. Relating three-dimensional structures to protein networks provides evolutionary insights. Science, 2006, 314(5807): 1938–1941
CrossRef Google scholar
[82]
Taylor I W, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana J L. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnology, 2009, 27(2): 199–204
CrossRef Google scholar
[83]
Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Computational Biology, 2009, 5(12): e1000601
CrossRef Google scholar
[84]
Bonacich P. Power and centrality: a family of measures. American Journal of Sociology, 1987, 92(5): 1170–1182
CrossRef Google scholar
[85]
Pržulj N, Wigle D A, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics, 2004, 20(3): 340–348
CrossRef Google scholar
[86]
Yu H, Kim P M, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Computational Biology, 2007, 3(4): e59
CrossRef Google scholar
[87]
Stephenson K, Zelen M. Rethinking centrality: methods and examples. Social Networks, 1989, 11(1): 1–37
CrossRef Google scholar
[88]
Zhang X, Xu J, Xiao W. A new method for the discovery of essential proteins. PLoS ONE, 2013, 8(3): e58763
CrossRef Google scholar
[89]
Xiao Q, Wang J, Peng X, Wu F X, Pan Y. Identifying essential proteins from active PPI networks constructed with dynamic gene expression. BMC Genomics, 2015, 16(Suppl 3): S1
CrossRef Google scholar
[90]
Li M, Li W, Wu F X, Pan Y, Wang J. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information. Journal of Theoretical Biology, 2018, 447: 65–73
CrossRef Google scholar
[91]
Li M, Ni P, Chen X, Wang J, Wu F X, Pan Y. Construction of refined protein interaction network for predicting essential proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(4): 1386–1397
CrossRef Google scholar
[92]
Acencio M L, Lemke N. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. BMC Bioinformatics, 2009, 10(1): 290
CrossRef Google scholar
[93]
Peng X, Wang J, Wang J, Wu F X, Pan Y. Rechecking the centralitylethality rule in the scope of protein subcellular localization interaction networks. PLoS ONE, 2015, 10(6): e0130743
CrossRef Google scholar
[94]
Peng W, Wang J, Cheng Y, Lu Y, Wu F X, Pan Y. UDoNC: an algorithm for identifying essential proteins based on protein domains and protein-protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(2): 276–288
CrossRef Google scholar
[95]
Luo J, Qi Y. Identification of essential proteins based on a new combination of local interaction density and protein complexes. PLoS ONE, 2015, 10(6): e0131418
CrossRef Google scholar
[96]
Li M, Niu Z, Chen X, Zhong P, Wu F X, Pan Y. A reliable neighborbased method for identifying essential proteins by integrating gene expressions, orthology, and subcellular localization information. Tsinghua Science and Technology, 2016, 21(6): 668–677
CrossRef Google scholar
[97]
Zhang W, Xu J, Li Y, Zou X. Detecting essential proteins based on network topology, gene expression data and gene ontology information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15(1): 109–116
CrossRef Google scholar
[98]
Lei X, Zhao J, Fujita H, Zhang A. Predicting essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets. Knowledge-Based Systems, 2018, 151: 136–148
CrossRef Google scholar
[99]
Zeng M, Li M, Wu F X, Li Y, Pan Y. DeepEP: a deep learning framework for identifying essential proteins. BMC Bioinformatics, 2019, 20(16): 506
CrossRef Google scholar
[100]
Tang Y, Li M, Wang J, Pan Y, Wu F X. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127: 67–72
CrossRef Google scholar
[101]
Scardoni G, Petterlini M, Laudanna C. Analyzing biological network parameters with CentiScaPe. Bioinformatics, 2009, 25(21): 2857–2859
CrossRef Google scholar
[102]
Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 2014, 8(S4): S11
CrossRef Google scholar
[103]
Assenov Y, Ramírez F, Schelhorn S E, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics, 2008, 24(2): 282–284
CrossRef Google scholar
[104]
Junker B H, Koschützki D, Schreiber F. Exploration of biological network centralities with CentiBiN. BMC Bioinformatics, 2006, 7(1): 219
CrossRef Google scholar
[105]
Gräßler J, Koschützki D, Schreiber F. CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics, 2012, 28(8): 1178–1179
CrossRef Google scholar
[106]
Zhang J, Li W, Zeng M, Meng X, KurganL, Wu F X, Li M. NetEPD: a network-based essential protein discovery platform. Tsinghua Science and Technology, 2020, 25(4): 542–552
CrossRef Google scholar
[107]
Schult D A. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference. 2008, 11–15
[108]
Konganti K, Wang G, Yang E, Cai J J. SBEToolbox: a Matlab toolbox for biological network analysis. Evolutionary Bioinformatics Online, 2013, 9: 355
CrossRef Google scholar
[109]
Drozdov I, Ouzounis C A, Shah A M, Tsoka S. Functional genomics assistant (FUGA): a toolbox for the analysis of complex biological networks. BMC Research Notes, 2011, 4(1): 462
CrossRef Google scholar
[110]
Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 2003, 100(21): 12123–12128
CrossRef Google scholar
[111]
Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 2004, 101(9): 2658–2663
CrossRef Google scholar
[112]
Luo F, Yang Y, Chen C F, Chang R, Zhou J, Scheuermann R H. Modular organization of protein interaction networks. Bioinformatics, 2007, 23(2): 207–214
CrossRef Google scholar
[113]
Wang J, Li M, Chen J, Pan Y. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 8(3): 607–620
CrossRef Google scholar
[114]
Gavin A C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415(6868): 141–147
CrossRef Google scholar
[115]
Tarassov K, Messier V, Landry C R, Radinovic S, Serna Molina M M, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick S W. An in vivo map of the yeast protein interactome. Science, 2008, 320(5882): 1465–1470
CrossRef Google scholar
[116]
Ravasz E, Somera A L, Mongru D A, Oltvai Z N, Barabási A L. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297(5586): 1551–1555
CrossRef Google scholar
[117]
Yook S, Oltvai Z, Barabási A. Functional and topological characterization of protein interaction networks. Proteomics, 2004, 4(4): 928–942
CrossRef Google scholar
[118]
Farkas I, Jeong H, Vicsek T, Barabási A L, Oltvai Z N. The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A: Statistical Mechanics & Its Applications, 2003, 318(3–4): 601–612
CrossRef Google scholar
[119]
Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M. A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology, 2018, 12(1): 80
CrossRef Google scholar
[120]
Yoon J, Blumer A, Lee K. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics, 2006, 22(24): 3106–3108
CrossRef Google scholar
[121]
Lee M J, Choi S, Chung C W. Efficient algorithms for updating betweenness centrality in fully dynamic graphs. Information Sciences, 2016, 326(C): 278–296
CrossRef Google scholar
[122]
Hao D, Ren C, Li C. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure. BMC Systems Biology, 2012, 6(1): 1–10
CrossRef Google scholar
[123]
Li Y, Shang Y, Yang Y. Clustering coefficients of large networks. Information Sciences, 2017, 382: 350–358
CrossRef Google scholar
[124]
Hartuv E, Shamir R. A clustering algorithm based on graph connectivity. Information Processing Letters, 2000, 76(4–6): 175–181
CrossRef Google scholar
[125]
Hu H, Yan X, Huang Y, Han J, Zhou X J. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 2005, 21(suppl 1): i213–i221
CrossRef Google scholar
[126]
Newman M, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69(2): 1–16
CrossRef Google scholar
[127]
Li M, Wang J, Chen J. A fast agglomerate algorithm for mining functional modules in protein interaction networks. In: Proceedings of International Conference on Biomedical Engineering and Informatics. 2008, 3–7
[128]
Wang J, Ren J, Li M, Wu F X. Identification of hierarchical and overlapping functional modules in PPI networks. IEEE Transactions on Nanobioscience, 2012, 11(4): 386–393
CrossRef Google scholar
[129]
Lu Y, Hou X, Chen X. A novel travel-time based similarity measure for hierarchical clustering. Neurocomputing, 2016, 173: 3–8
CrossRef Google scholar
[130]
Cho Y R, Hwang W, Ramanathan M, Zhang A. Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics, 2007, 8(1): 265
CrossRef Google scholar
[131]
Bader G D, Hogue C W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1): 2
CrossRef Google scholar
[132]
Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 2006, 7(1): 1–13
CrossRef Google scholar
[133]
Jiang P, Singh M. SPICi: a fast clustering algorithm for large biological networks. Bioinformatics, 2010, 26(8): 1105–1111
CrossRef Google scholar
[134]
Adamcsek B, Palla G, Farkas I J, Derényi I, Vicsek T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 2006, 22(8): 1021–1023
CrossRef Google scholar
[135]
Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods, 2012, 9(5): 471–472
CrossRef Google scholar
[136]
King A D, Pržulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics, 2004, 20(17): 3013–3020
CrossRef Google scholar
[137]
Vlasblom J, Wodak S J. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics, 2009, 10(1): 99
CrossRef Google scholar
[138]
Cho Y R, Zhang A. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins. BMC Bioinformatics, 2010, 11(3): 1–10
CrossRef Google scholar
[139]
Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084): 631–636
CrossRef Google scholar
[140]
Min W, Li X, Kwoh C K, Ng S K. A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics, 2009, 10(1): 169
CrossRef Google scholar
[141]
Ma X, Gao L. Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability. Information Sciences, 2012, 189(7): 233–254
CrossRef Google scholar
[142]
Zhang A. Protein Interaction Networks: Computational Analysis. England: Cambridge University Press, 2009
CrossRef Google scholar
[143]
Enright A J, Dongen S V, Ouzounis C A. An efficient algorithm for largescale detection of protein families. Nucleic Acids Research, 2002, 30(7): 1575–1584
CrossRef Google scholar
[144]
Bhowmick S, Seah B S. Clustering and summarizing protein-protein interaction networks: a survey. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 638–658
CrossRef Google scholar
[145]
Satuluri V, Parthasarathy S, Ucar D. Markov clustering of protein interaction networks with improved balance and scalability. In: Proceedings of ACM International Conference on Bioinformatics and Computational Biology. 2010, 247–256
CrossRef Google scholar
[146]
Hwang W, Cho Y R, Zhang A, Ramanathan M. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology, 2006, 1(1): 1–11
CrossRef Google scholar
[147]
Hwang W, Cho Y R, Zhang A, Ramanathan M. CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions. BMC Bioinformatics, 2008, 9(1): 64
CrossRef Google scholar
[148]
Feng J, Jiang R, Jiang T. A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(3): 621–634
CrossRef Google scholar
[149]
Ji J, Zhang A, Liu C, Quan X, Liu Z. Survey: functional module detection from protein-protein interaction networks. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 261–277
CrossRef Google scholar
[150]
Wang R, Wang C, Sun L, Liu G. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and GO annotations. BMC Genomics, 2019, 20(1): 637
CrossRef Google scholar
[151]
Xiao Q, Wang J, Peng X, Wu F X. Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles. Proteome Science, 2013, 11(Suppl 1): S20
CrossRef Google scholar
[152]
Topchy A, Jain A K, Punch W. Clustering ensembles: models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866–1881
CrossRef Google scholar
[153]
Asur S. An ensemble framework for clustering protein-protein interaction networks. Bioinformatics, 2007, 23(13): i29–i40
CrossRef Google scholar
[154]
Greene D, Cagney G, Krogan N, Cunningham P. Ensemble non-negative matrix factorization methods for clustering protein-protein interactions. Bioinformatics, 2008, 24(15): 1722–1728
CrossRef Google scholar
[155]
Wang R S, Zhang S, Wang Y, Zhang X S, Chen L. Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures. Neurocomputing, 2008, 72(1–3): 134–141
CrossRef Google scholar
[156]
Ou-Yang X L, Dai D Q, Zhang X F. Protein complex detection via weighted ensemble clustering based on bayesian nonnegative matrix factorization. PLoS ONE, 2013, 8(5): e62158
CrossRef Google scholar
[157]
Wu M, Ou-Yang L, Li X L. Protein complex detection via effective integration of base clustering solutions and co-complex affinity scores. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(3): 733–739
CrossRef Google scholar
[158]
Xu B, Li K, Zheng W, Liu X, Zhang Y, Zhao Z, He Z. Protein complexes identification based on go attributed network embedding. BMC Bioinformatics, 2018, 19(1): 535
CrossRef Google scholar
[159]
Meng X, Peng X, Wu F X, Li M. Detecting protein complex based on hierarchical compressing network embedding. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine. 2019, 215–218
CrossRef Google scholar
[160]
Lei X, Fang M, Guo L, Wu F X. Protein complex detection based on flower pollination mechanism in multi-relation reconstructed dynamic protein networks. BMC Bioinformatics, 2019, 20(3): 131
CrossRef Google scholar
[161]
Ma X, Sun P G, Gong M. An integrative framework of heterogeneous genomic data for cancer dynamic modules based on matrix decomposition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.3004808
CrossRef Google scholar
[162]
Li M, Li D, Tang Y, Wu F X, Wang J. CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. International Journal of Molecular Sciences, 2017, 18(9): 1880
CrossRef Google scholar
[163]
Wang J, Zhong J, Chen G, Li M, Wu F X, Pan Y. ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACMTransactions on Computational Biology and Bioinformatics, 2015, 12(4): 815–822
CrossRef Google scholar
[164]
Natale M, Benso A, Di Carlo S, Ficarra E. FunMod: a cytoscape plugin for identifying functional modules in undirected protein-protein networks. Genomics, Proteomics & Bioinformatics, 2014, 12(4): 178–186
CrossRef Google scholar
[165]
Szalay-Bek˝o M, Palotai R, Szappanos B, Kovács I A, Papp B, Csermely P. ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics, 2012, 28(16): 2202–2204
CrossRef Google scholar
[166]
Li M, Tang Y, Wu X, Wang J, Wu F X, Pan Y. C-DEVA: detection, evaluation, visualization and annotation of clusters from biological networks. Biosystems, 2016, 150: 78–86
CrossRef Google scholar
[167]
Kouhsar M, Zare-Mirakabad F, Jamali Y. WCOACH: protein complex prediction in weighted PPI networks. Genes & Genetic Systems, 2015, 90(5): 317–324
CrossRef Google scholar
[168]
Srihari S, Ragan M A. Systematic tracking of dysregulated modules identifies novel genes in cancer. Bioinformatics, 2013, 29(12): 1553–1561
CrossRef Google scholar
[169]
Li D, Pan Z, Hu G, Anderson G, He S. Active module identification from multilayer weighted gene co-expression networks: a continuous optimization approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI:10.1109/TCBB.2020.2970400
CrossRef Google scholar
[170]
De L U, Jensen L J, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science, 2005, 307(5710): 724–727
CrossRef Google scholar
[171]
Kayarkar N A, Durgude S G, Maurya B D, Pawar S V, Chate P B. Protein networks in diseases. International Journal of Drug Discovery, 2009, 1(2): 10–17
[172]
Tokuriki N, Tawfik D S. Protein dynamism and evolvability. Science, 2009, 324(5924): 203–207
CrossRef Google scholar
[173]
Hegde S R, Manimaran P, Mande S C. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data. PLoS Computational Biology, 2008, 4(11): e1000237
CrossRef Google scholar
[174]
Tu B P, Mcknight S L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 2005, 310(5751): 1152–1158
CrossRef Google scholar
[175]
Shen X, Li Y, Jiang X, He T, Hu X, Yang J. Mining temporal protein complex based on the dynamic PIN weighted with connected affinity and gene co-expression. PLoS ONE, 2016, 11(4): e0153967
CrossRef Google scholar
[176]
Liu W, Xie H. Construction and analysis of dynamic molecular networks. Progress in Biochemistry and Biophysics, 2014, 41(2): 115–125 (in Chinese)
[177]
Xia K, Xue H, Dong D, Zhu S, Wang J, Zhang Q, Hou L, Chen H, Tao R, Huang Z, Fu Z, Chen Y G, Han J D J. Identification of the proliferation/differentiation switch in the cellular network of multicellular organisms. PLoS Computational Biology, 2006, 2(11): e145
CrossRef Google scholar
[178]
Przytycka T M, Singh M, Slonim D K. Toward the dynamic interactome: it’s about time. Briefings in Bioinformatics, 2010, 11(1): 15–29
CrossRef Google scholar
[179]
Bossi A, Lehner B. Tissue specificity and the human protein interaction network. Molecular Systems Biology, 2009, 5(1): 260
CrossRef Google scholar
[180]
Lichtenstein I, Charleston M A, Caetano T S, Gamble J R, Vadas M A. Active subnetwork recovery with a mechanism-dependent scoring function; with application to angiogenesis and organogenesis studies. BMC Bioinformatics, 2013, 14(1): 59
CrossRef Google scholar
[181]
Bródka P, Saganowski S, Kazienko P. GED: the method for group evolution discovery in social networks. Social Network Analysis and Mining, 2013, 3(1): 1–14
CrossRef Google scholar
[182]
Du N, Jiang K, Sawle A D, Frank M B, Wallace C A, Zhang A, Jarvis J N. Dynamic tracking of functional gene modules in treated juvenile idiopathic arthritis. Genome Medicine, 2015, 7(1): 109
CrossRef Google scholar
[183]
Luo J, Song D, Liang C, Li G. Model the evolution of protein interaction network assisted with protein age. Journal of Theoretical Biology, 2013, 333: 10–17
CrossRef Google scholar
[184]
Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J. Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods, 2016, 110: 90–96
CrossRef Google scholar
[185]
Curtis R E, Yuen A, Song L, Goyal A, Xing E P. TVNViewer: an interactive visualization tool for exploring networks that change over time or space. Bioinformatics, 2011, 27(13): 1880–1881
CrossRef Google scholar
[186]
Tian Y, Zhang B, Hoffman E P, Clarke R, Zhang Z, Shih I M, Xuan J, Herrington D M, Wang Y. KDDN: an open-source cytoscape app for constructing differential dependency networks with significant rewiring. Bioinformatics, 2014, 31(2): 287–289
CrossRef Google scholar
[187]
Goenawan I H, Bryan K, Lynn D J. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics, 2016, 32(17): 2713–2715
CrossRef Google scholar
[188]
Li M, Yang J, Wu F X, Pan Y, Wang J. DyNetViewer: a cytoscape app for dynamic network construction, analysis and visualization. Bioinformatics, 2018, 34(9): 1597–1599
CrossRef Google scholar
[189]
Wang X, Gulbahce N, Yu H. Network-based methods for human disease gene prediction. Briefings in Functional Genomics, 2011, 10(5): 280–293
CrossRef Google scholar
[190]
Xiang J, Zhang N R, Zhang J S, Lv X Y, Li M. PrGeFNE: predicting disease-related genes by fast network embedding. Methods, 2020, DOI:10.1016/j.ymeth.2020.1006.1015
CrossRef Google scholar
[191]
Hamed M, Spaniol C, Zapp A, Helms V. Integrative network-based approach identifies key genetic elements in breast invasive carcinoma. BMC Genomics, 2015, 16(5): S2
CrossRef Google scholar
[192]
Barabási A L, Gulbahce N, Loscalzo J. Network medicine: a networkbased approach to human disease. Nature Reviews Genetics, 2011, 12(1): 56–68
CrossRef Google scholar
[193]
Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han J D. A modular network model of aging. Molecular Systems Biology, 2007, 3(1): 147
CrossRef Google scholar
[194]
Faisal F E, Milenković T. Dynamic networks reveal key players in aging. Bioinformatics, 2014, 30(12): 1721–1729
CrossRef Google scholar
[195]
Sun S Y, Liu Z P, Zeng T, Wang Y, Chen L. Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Scientific Reports, 2013, 3: 2268
CrossRef Google scholar
[196]
Elia J, Glessner J T, Wang K, Takahashi N, Shtir C J, Hadley D, Sleiman P M A, Zhang H, Kim C E, Robison R, Lyon G L, Flory J H, Bradfield J P, Imielinski M, Hou C, Frackelton E C, Chiavacci R M, Sakurai T, Rabin C, Middleton F A, Thomas K A, Garris M, Mentch F, Freitag C M, Steinhausen H C, Todorov A A, Reif A, Rothenberger A, Franke B, Mick E O, Roeyers H, Buitelaar J, Lesch K P, Banaschewski T, Ebstein R P, Mulas F, Oades R D, Sergeant J, Sonuga-Barke E, Renner T J, Romanos M, Romanos J, Warnke A, Walitza S, Meyer J, Pálmason H, Seitz C, Loo S K, Smalley S L, Biederman J, Kent L, Asherson P, Anney R J L, Gaynor J W, Shaw P, Devoto M, White P S, Grant S F A, Buxbaum J D, Rapoport J L, Williams N M, Nelson S F, Faraone S V, Hakonarson H. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genetics, 2012, 44(1): 78–84
CrossRef Google scholar
[197]
Luo X, Huang L, Han L, Luo Z, Hu F, Tieu R, Gan L. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes. Schizophrenia Bulletin, 2014, 40(6):1285–1899
CrossRef Google scholar
[198]
Ma X, Gao L, Karamanlidis G, Gao P, Lee C F, Garcia-Menendez L, Tian R, Tan K. Revealing pathway dynamics in heart diseases by analyzing multiple differential networks. PLoS Computational Biology, 2015, 11(6): e1004332
CrossRef Google scholar
[199]
Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, Xia J. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nature Communications, 2018, 9(1): 678
CrossRef Google scholar
[200]
Li Y, Jin S, Lei L, Pan Z, Zou X. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Scientific Reports, 2015, 5: 9283
CrossRef Google scholar
[201]
Li M, Gao H, Wang J, Wu F X. Control principles for complex biological networks. Briefings in Bioinformatics, 2019, 20(6): 2253–2266
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(783 KB)

Accesses

Citations

Detail

Sections
Recommended

/