Protein interaction networks: centrality, modularity, dynamics, and applications

Xiangmao MENG , Wenkai LI , Xiaoqing PENG , Yaohang LI , Min LI

Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156902

PDF (783KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156902 DOI: 10.1007/s11704-020-8179-0
REVIEW ARTICLE

Protein interaction networks: centrality, modularity, dynamics, and applications

Author information +
History +
PDF (783KB)

Abstract

In the post-genomic era, proteomics has achieved significant theoretical and practical advances with the development of high-throughput technologies. Especially the rapid accumulation of protein-protein interactions (PPIs) provides a foundation for constructing protein interaction networks (PINs), which can furnish a new perspective for understanding cellular organizations, processes, and functions at network level. In this paper, we present a comprehensive survey on three main characteristics of PINs: centrality, modularity, and dynamics. 1) Different centrality measures, which are used to calculate the importance of proteins, are summarized based on the structural characteristics of PINs or on the basis of its integrated biological information; 2) Different modularity definitions and various clustering algorithms for predicting protein complexes or identifying functional modules are introduced; 3) The dynamics of proteins, PPIs and sub-networks are discussed, respectively. Finally, the main applications of PINs in the complex diseases are reviewed, and the challenges and future research directions are also discussed.

Keywords

protein interaction networks / network centrality / modularity / dynamics / complex diseases

Cite this article

Download citation ▾
Xiangmao MENG, Wenkai LI, Xiaoqing PENG, Yaohang LI, Min LI. Protein interaction networks: centrality, modularity, dynamics, and applications. Front. Comput. Sci., 2021, 15(6): 156902 DOI:10.1007/s11704-020-8179-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumar A, Snyder M. Proteomics: protein complexes take the bait. Nature, 2002, 415(6868): 123–124

[2]

Von Mering C, Krause R, Snel B, Cornell M, Oliver S G, Fields S, Bork P. Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 2002, 417(6887): 399–403

[3]

Zeng M, Zhang F, Wu F X, L i Y, Wang J, Li M. Protein-protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics, 2020, 36(4): 1114–1120

[4]

Chen Y C, Rajagopala S V, Stellberger T, Uetz P. Exhaustive benchmarking of the yeast two-hybrid system. Nature Methods, 2010, 7(9): 667

[5]

Morris J H, Knudsen G M, Verschueren E, Johnson J R, Cimermancic P, Greninger A L, Pico A R. Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nature Protocols, 2014, 9(11): 2539

[6]

Hu B, Petela N, Kurze A, Chan K L, Chapard C, Nasmyth K. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Research, 2015, 43(20): e132

[7]

Wang R, Liu G, Wang C. Identifying protein complexes based on an edge weight algorithm and core-attachment structure. BMC Bioinformatics, 2019, 20(1): 471

[8]

Zhu Y, Li Y, Liu J, Qin L, Yu J X. Discovering large conserved functional components in global network alignment by graph matching. BMC Genomics, 2018, 19(7): 670

[9]

Janwa H, Massey S E, Velev J, Mishra B. On the origin of biomolecular networks. Frontiers in Genetics, 2019, 10: 240

[10]

Davis D, Yaveroˇglu Ö N, Malod-Dognin N, Stojmirovic A, Pržulj N. Topology-function conservation in protein-protein interaction networks. Bioinformatics, 2015, 31(10): 1632

[11]

Li G, Li M, Peng W, Li Y, Pan Y, Wang J. A novel extended Pareto Optimality Consensus model for predicting essential proteins. Journal of Theoretical Biology, 2019, 480: 141–149

[12]

Liu C, Ma Y, Zhao J, Nussinov R, Zhang Y C, Cheng F, Zhang Z K. Computational network biology: data, models, and applications. Physics Reports, 2020, 846: 1–66

[13]

Taylor N R. Small world network strategies for studying protein structures and binding. Computational and Structural Biotechnology Journal, 2013, 5(6): e201302006

[14]

Leventhal G E, Hill A L, Nowak M A, Bonhoeffer S. Evolution and emergence of infectious diseases in theoretical and real-world networks. Nature, 2015, 6: 6101

[15]

Barabasi A L, Oltvai Z N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 2004, 5(2): 101–113

[16]

Nacher J C, Hayashida M, Akutsu T. Emergence of scale-free distribution in protein-protein interaction networks based on random selection of interacting domain pairs. BioSystems, 2009, 95(2): 155–159

[17]

Alanis-Lobato G, Mier P, Andrade-Navarro M. The latent geometry of the human protein interaction network. Bioinformatics, 2018, 34(16): 2826–2834

[18]

Han J D J, Bertin N, Hao T, Goldberg D S, Berriz G F, Zhang L V, Dupuy D, Walhout A J M, Cusick M E, Roth F P, Vidal M. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004, 430(6995): 88–93

[19]

Komurov K, White M. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Molecular Systems Biology, 2007, 3(1): 110

[20]

Mitra K, Carvunis A R, Ramesh S K, Ideker T. Integrative approaches for finding modular structure in biological networks. Nature Reviews Genetics, 2013, 14(10): 719–732

[21]

Li D, Li J, Ouyang S, Wang J, Wu S, Wan P, Zhu Y, Xu X ,He F. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness. Proteomics, 2006, 6(2): 456–461

[22]

Pereira-Leal J B, Levy E D, Teichmann S A. The origins and evolution of functional modules: lessons from protein complexes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2006, 361(1467): 507–517

[23]

Jeong H, Mason S P, Barabási A L, Oltvai Z N. Lethality and centrality in protein networks. Nature, 2001, 411(6833): 41–44

[24]

Estrada E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics, 2006, 6(1): 35–40

[25]

Joy M P, Brock A, Ingber D E, Huang S. High-betweenness proteins in the yeast protein interaction network. BioMed Research International, 2005, 2005(2): 96–103

[26]

Estrada E, Rodríguez-Velázquez J A. Subgraph centrality in complex networks. Physical Review E, 2005, 71(5): 056103

[27]

Li M, Wang J, Chen X, Wang H, Pan Y. A local average connectivitybased method for identifying essential proteins from the network level. Computational Biology and Chemistry, 2011, 35(3): 143–150

[28]

Wang J, Li M, Wang H, Pan Y. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1070–1080

[29]

Liu Y, Liang H, Zou Q, He Z. Significance-based essential protein discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.3004364

[30]

Zeng M, Li M, Fei Z, Wu F X, Li Y, Pan Y, Wang J. A deep learning framework for identifying essential proteins by integrating multiple types of biological information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, DOI: 10.1109/TCBB.2019.2897679

[31]

Li G, Li M, Wang J, Wu J, Wu F X, Pan Y. Predicting essential proteins based on subcellular localization, orthology and PPI networks. BMC Bioinformatics, 2016, 17(8): 279

[32]

Helden J V. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics, 2006, 7(1): 488

[33]

Liu W, Ma L, Jeon B, Chen L, Chen B. A network Hierarchy-Based method for functional module detection in protein-protein interaction networks. Journal of Theoretical Biology, 2018, 455: 26–38

[34]

Xiang J, Zhang Y, Li J M, Li H J, Li M. Identifying multi-scale communities in networks by asymptotic surprise. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019(3): 033403

[35]

Li M, Wu X, Wang J, Pan Y. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics, 2012, 13(1): 109

[36]

Wang J, Peng X, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics, 2013, 13(2): 301–312

[37]

Alon U. Biological networks: the tinkerer as an engineer. Science, 2003, 301(5641): 1866–1867

[38]

Zhang F, Song H, Zeng M, Li Y, Kurgan L, Li M. DeepFunc: a deep learning framework for accurate prediction of protein functions from protein sequences and interactions. Proteomics, 2019, 19(12): 1900019

[39]

Wang Y, You Z, Li L, Chen Z. A survey of current trends in computational predictions of protein-protein interactions. Frontiers of Computer Science, 2020, 14(4): 144901

[40]

Nourani E, Khunjush F, Durmuş S. Computational approaches for prediction of pathogen-host protein-protein interactions. Frontiers in Microbiology, 2015, 6: 94

[41]

Li X, Li W, Zeng M, Zheng R, Li M. Network-based methods for predicting essential genes or proteins: a survey. Briefings in Bioinformatics, 2020, 21(2): 566–583

[42]

Keskin O, Tuncbag N, Gursoy A. Predicting protein-protein interactions from the molecular to the proteome level. Chemical Reviews, 2016, 116(8): 4884–4909

[43]

Li T, Wernersson R, Hansen R B, Horn H, Mercer J, Slodkowicz G, Workman C T, Rigina O, Rapacki K, Særfeldt H H, Brunak S, Jensen T S, Lage K. A scored human protein-protein interaction network to catalyze genomic interpretation. Nature Methods, 2017, 14: 61–64

[44]

Prasad T S K, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan D S, Sebastian A, Rani S, Ray S, Kishore C J H, Kanth S, Ahmed M, Kashyap M K, Mohmood R, Ramachandra Y L, Krishna V, Rahiman B A, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A. Human protein reference database 2009 update. Nucleic Acids Research, 2008, 37(suppl 1): D767–D772

[45]

Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Research, 2015, 44(D1): D536–D541

[46]

Cowley M J, Pinese M, Kassahn K S, Waddell N, Pearson J V, Grimmond S M, Biankin A V, Hautaniemi S, Wu J. PINA v2. 0: mining interactome modules. Nucleic Acids Research, 2011, 40(D1): D862–D865

[47]

Das J, Yu H. HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Systems Biology, 2012, 6(1): 92

[48]

Razick S, Magklaras G, Donaldson I M. iRefIndex: a consolidated protein interaction database with provenance. BMC Bioinformatics, 2008, 9(1): 405

[49]

Salwinski L, Miller C S, Smith A J, Pettit F K, Bowie J U, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Research, 2004, 32(suppl 1): D449–D451

[50]

Luck K, Kim D K, Lambourne L, Spirohn K, Begg B E, et al. A reference map of the human binary protein interactome. Nature, 2020, 580(7803): 402–408

[51]

Szklarczyk D, Gable A L, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva N T, Morris J H, Bork P, Jensen L S. Mering C v. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 2019, 47(D1): D607–D613

[52]

Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez R C, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct molecular interaction database in 2012. Nucleic Acids Research, 2012, 40(D1): D841–D846

[53]

Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes H-W, Ruepp A, Frishman D. The MIPS mammalian protein-protein interaction database. Bioinformatics, 2005, 21(6): 832–834

[54]

Oughtred R, Stark C, Breitkreutz B J, Rust J, Boucher L, Chang C, Kolas N, O’Donnell L, Leung G, McAdam R, Zhang F, Dolma S, Willems A, Coulombe-Huntington J, Chatr-aryamontri A, Dolinski K, Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Research, 2019, 47(D1): D529–D541

[55]

Koutrouli M, Karatzas E, Paez-Espino D, Pavlopoulos G A. A guide to conquer the biological network era using graph theory. Frontiers in Bioengineering and Biotechnology, 2020, 8: 34

[56]

Li M, Zheng R, Zhang H, Wang J, Pan Y. Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods, 2014, 67(3): 325–333

[57]

Li M, Chen J, Wang J, Hu B, Chen G. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics, 2008, 9(1): 398

[58]

Peng W, Wang J, Zhao B, Wang L. Identification of protein complexes using weighted PageRank-Nibble algorithm and core-attachment structure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(1): 179–192

[59]

Lv Z, Ao C, Zou Q. Protein function prediction: from traditional classifier to deep learning. Proteomics, 2019, 19(14): 1900119

[60]

Zhang F, Song H, Zeng M, Wu F X, Li Y, Pan Y, Li M. A deep learning framework for gene ontology annotations with sequence-and network- based information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.2968882

[61]

Ganegoda G U, Wang J X, Wu F X, Li M. Prediction of disease genes using tissue-specified gene-gene network. BMC Systems Biology, 2014, 8(3): S3

[62]

Wei P J, Wu F X, Xia J, Su Y, Wang J, Zheng C H. Prioritizing cancer genes based on an improved random walk method. Frontiers in Genetics, 2020, 11: 377

[63]

Ding Y, Tang J, Guo F. Identification of drug-target interactions via dual laplacian regularized least squares with multiple kernel fusion. Knowledge-Based Systems, 2020, 204: 106254

[64]

Zhao T, Hu Y, Valsdottir L R, Zang T, Peng J. Identifying drug-target interactions based on graph convolutional network and deep neural network. Briefings in Bioinformatics, 2020, DOI: 10.1093/bib/bbaa044

[65]

Yu L, Zhao J, Gao L. Predicting potential drugs for breast cancer based on miRNA and tissue specificity. International Journal of Biological Sciences, 2018, 14(8): 971

[66]

Li X, Xiang J, Wang J, Li J, Wu F X, Li M. FUNMarker: fusion networkbased method to identify prognostic and heterogeneous breast cancer biomarkers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.2973148

[67]

Liu X, Chang X, Leng S, Tang H, Aihara K, Chen L. Detection for disease tipping points by landscape dynamic network biomarkers. National Science Review, 2019, 6(4): 775–785

[68]

Liu R, Chen P, Chen L. Single-sample landscape entropy reveals the imminent phase transition during disease progression. Bioinformatics, 2020, 36(5): 1522–1532

[69]

Carneiro D G, Clarke T, Davies C C, Bailey D. Identifying novel protein interactions: proteomic methods, optimisation approaches and data analysis pipelines. Methods, 2015, 95: 46–54

[70]

Srihari S, Yong C H, Wong L. Computational Prediction of Protein Complexes from Protein Interaction Networks. Williston: Morgan & Claypool, 2017

[71]

Wang J, Peng X, Peng W, Wu F X. Dynamic protein interaction network construction and applications. Proteomics, 2014, 14(4–5): 338–352

[72]

Li M, Meng X, Zheng R, Wu F X, Li Y, Pan Y, Wang J. Identification of protein complexes by using a spatial and temporal active protein interaction network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(3): 817–827

[73]

Xiao Q, Luo P, Li M, Wang J, Wu F X. A novel core-attachment-based method to identify dynamic protein complexes based on gene expression profiles and PPI networks. Proteomics, 2019, 19(5): 1800129

[74]

Wang R, Wang C, Liu G. A novel graph clustering method with a greedy heuristic search algorithm for mining protein complexes from dynamic and static PPI networks. Information Sciences, 2020, 522: 275–298

[75]

Tang X, Wang J, Liu B, Li M, Chen G, Pan Y. A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics, 2011, 12(1): 1–15

[76]

Tang X, Wang J, Zhong J, Pan Y. Predicting essential proteins based on weighted degree centrality. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(2): 407–418

[77]

Lin C Y, Chin C H, Wu H H, Chen S H, Ko M T. Hubba: hub objects analyzer-a framework of interactome hubs identification for network biology. Nucleic Acids Research, 2008, 36(suppl 2): W438–W443

[78]

Li M, Zhang H, Wang J, Pan Y. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Systems Biology, 2012, 6(1): 15

[79]

He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genetics, 2006, 2(6): e88

[80]

Zotenko E, Mestre J, O’Leary D P, Przytycka T M. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Computational Biology, 2008, 4(8): e1000140

[81]

Kim P M, Lu L J, Xia Y, Gerstein MB. Relating three-dimensional structures to protein networks provides evolutionary insights. Science, 2006, 314(5807): 1938–1941

[82]

Taylor I W, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana J L. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnology, 2009, 27(2): 199–204

[83]

Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural perspective. PLoS Computational Biology, 2009, 5(12): e1000601

[84]

Bonacich P. Power and centrality: a family of measures. American Journal of Sociology, 1987, 92(5): 1170–1182

[85]

Pržulj N, Wigle D A, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics, 2004, 20(3): 340–348

[86]

Yu H, Kim P M, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Computational Biology, 2007, 3(4): e59

[87]

Stephenson K, Zelen M. Rethinking centrality: methods and examples. Social Networks, 1989, 11(1): 1–37

[88]

Zhang X, Xu J, Xiao W. A new method for the discovery of essential proteins. PLoS ONE, 2013, 8(3): e58763

[89]

Xiao Q, Wang J, Peng X, Wu F X, Pan Y. Identifying essential proteins from active PPI networks constructed with dynamic gene expression. BMC Genomics, 2015, 16(Suppl 3): S1

[90]

Li M, Li W, Wu F X, Pan Y, Wang J. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information. Journal of Theoretical Biology, 2018, 447: 65–73

[91]

Li M, Ni P, Chen X, Wang J, Wu F X, Pan Y. Construction of refined protein interaction network for predicting essential proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(4): 1386–1397

[92]

Acencio M L, Lemke N. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. BMC Bioinformatics, 2009, 10(1): 290

[93]

Peng X, Wang J, Wang J, Wu F X, Pan Y. Rechecking the centralitylethality rule in the scope of protein subcellular localization interaction networks. PLoS ONE, 2015, 10(6): e0130743

[94]

Peng W, Wang J, Cheng Y, Lu Y, Wu F X, Pan Y. UDoNC: an algorithm for identifying essential proteins based on protein domains and protein-protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(2): 276–288

[95]

Luo J, Qi Y. Identification of essential proteins based on a new combination of local interaction density and protein complexes. PLoS ONE, 2015, 10(6): e0131418

[96]

Li M, Niu Z, Chen X, Zhong P, Wu F X, Pan Y. A reliable neighborbased method for identifying essential proteins by integrating gene expressions, orthology, and subcellular localization information. Tsinghua Science and Technology, 2016, 21(6): 668–677

[97]

Zhang W, Xu J, Li Y, Zou X. Detecting essential proteins based on network topology, gene expression data and gene ontology information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15(1): 109–116

[98]

Lei X, Zhao J, Fujita H, Zhang A. Predicting essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets. Knowledge-Based Systems, 2018, 151: 136–148

[99]

Zeng M, Li M, Wu F X, Li Y, Pan Y. DeepEP: a deep learning framework for identifying essential proteins. BMC Bioinformatics, 2019, 20(16): 506

[100]

Tang Y, Li M, Wang J, Pan Y, Wu F X. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127: 67–72

[101]

Scardoni G, Petterlini M, Laudanna C. Analyzing biological network parameters with CentiScaPe. Bioinformatics, 2009, 25(21): 2857–2859

[102]

Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 2014, 8(S4): S11

[103]

Assenov Y, Ramírez F, Schelhorn S E, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics, 2008, 24(2): 282–284

[104]

Junker B H, Koschützki D, Schreiber F. Exploration of biological network centralities with CentiBiN. BMC Bioinformatics, 2006, 7(1): 219

[105]

Gräßler J, Koschützki D, Schreiber F. CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics, 2012, 28(8): 1178–1179

[106]

Zhang J, Li W, Zeng M, Meng X, KurganL, Wu F X, Li M. NetEPD: a network-based essential protein discovery platform. Tsinghua Science and Technology, 2020, 25(4): 542–552

[107]

Schult D A. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference. 2008, 11–15

[108]

Konganti K, Wang G, Yang E, Cai J J. SBEToolbox: a Matlab toolbox for biological network analysis. Evolutionary Bioinformatics Online, 2013, 9: 355

[109]

Drozdov I, Ouzounis C A, Shah A M, Tsoka S. Functional genomics assistant (FUGA): a toolbox for the analysis of complex biological networks. BMC Research Notes, 2011, 4(1): 462

[110]

Spirin V, Mirny L A. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences, 2003, 100(21): 12123–12128

[111]

Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 2004, 101(9): 2658–2663

[112]

Luo F, Yang Y, Chen C F, Chang R, Zhou J, Scheuermann R H. Modular organization of protein interaction networks. Bioinformatics, 2007, 23(2): 207–214

[113]

Wang J, Li M, Chen J, Pan Y. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 8(3): 607–620

[114]

Gavin A C, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415(6868): 141–147

[115]

Tarassov K, Messier V, Landry C R, Radinovic S, Serna Molina M M, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick S W. An in vivo map of the yeast protein interactome. Science, 2008, 320(5882): 1465–1470

[116]

Ravasz E, Somera A L, Mongru D A, Oltvai Z N, Barabási A L. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297(5586): 1551–1555

[117]

Yook S, Oltvai Z, Barabási A. Functional and topological characterization of protein interaction networks. Proteomics, 2004, 4(4): 928–942

[118]

Farkas I, Jeong H, Vicsek T, Barabási A L, Oltvai Z N. The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica A: Statistical Mechanics & Its Applications, 2003, 318(3–4): 601–612

[119]

Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam Z, Hennig H, Wolkenhauer O, Mirzaie M, Jafari M. A systematic survey of centrality measures for protein-protein interaction networks. BMC Systems Biology, 2018, 12(1): 80

[120]

Yoon J, Blumer A, Lee K. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics, 2006, 22(24): 3106–3108

[121]

Lee M J, Choi S, Chung C W. Efficient algorithms for updating betweenness centrality in fully dynamic graphs. Information Sciences, 2016, 326(C): 278–296

[122]

Hao D, Ren C, Li C. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure. BMC Systems Biology, 2012, 6(1): 1–10

[123]

Li Y, Shang Y, Yang Y. Clustering coefficients of large networks. Information Sciences, 2017, 382: 350–358

[124]

Hartuv E, Shamir R. A clustering algorithm based on graph connectivity. Information Processing Letters, 2000, 76(4–6): 175–181

[125]

Hu H, Yan X, Huang Y, Han J, Zhou X J. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 2005, 21(suppl 1): i213–i221

[126]

Newman M, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69(2): 1–16

[127]

Li M, Wang J, Chen J. A fast agglomerate algorithm for mining functional modules in protein interaction networks. In: Proceedings of International Conference on Biomedical Engineering and Informatics. 2008, 3–7

[128]

Wang J, Ren J, Li M, Wu F X. Identification of hierarchical and overlapping functional modules in PPI networks. IEEE Transactions on Nanobioscience, 2012, 11(4): 386–393

[129]

Lu Y, Hou X, Chen X. A novel travel-time based similarity measure for hierarchical clustering. Neurocomputing, 2016, 173: 3–8

[130]

Cho Y R, Hwang W, Ramanathan M, Zhang A. Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics, 2007, 8(1): 265

[131]

Bader G D, Hogue C W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1): 2

[132]

Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics, 2006, 7(1): 1–13

[133]

Jiang P, Singh M. SPICi: a fast clustering algorithm for large biological networks. Bioinformatics, 2010, 26(8): 1105–1111

[134]

Adamcsek B, Palla G, Farkas I J, Derényi I, Vicsek T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 2006, 22(8): 1021–1023

[135]

Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods, 2012, 9(5): 471–472

[136]

King A D, Pržulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics, 2004, 20(17): 3013–3020

[137]

Vlasblom J, Wodak S J. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics, 2009, 10(1): 99

[138]

Cho Y R, Zhang A. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins. BMC Bioinformatics, 2010, 11(3): 1–10

[139]

Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084): 631–636

[140]

Min W, Li X, Kwoh C K, Ng S K. A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinformatics, 2009, 10(1): 169

[141]

Ma X, Gao L. Predicting protein complexes in protein interaction networks using a core-attachment algorithm based on graph communicability. Information Sciences, 2012, 189(7): 233–254

[142]

Zhang A. Protein Interaction Networks: Computational Analysis. England: Cambridge University Press, 2009

[143]

Enright A J, Dongen S V, Ouzounis C A. An efficient algorithm for largescale detection of protein families. Nucleic Acids Research, 2002, 30(7): 1575–1584

[144]

Bhowmick S, Seah B S. Clustering and summarizing protein-protein interaction networks: a survey. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(3): 638–658

[145]

Satuluri V, Parthasarathy S, Ucar D. Markov clustering of protein interaction networks with improved balance and scalability. In: Proceedings of ACM International Conference on Bioinformatics and Computational Biology. 2010, 247–256

[146]

Hwang W, Cho Y R, Zhang A, Ramanathan M. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology, 2006, 1(1): 1–11

[147]

Hwang W, Cho Y R, Zhang A, Ramanathan M. CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions. BMC Bioinformatics, 2008, 9(1): 64

[148]

Feng J, Jiang R, Jiang T. A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(3): 621–634

[149]

Ji J, Zhang A, Liu C, Quan X, Liu Z. Survey: functional module detection from protein-protein interaction networks. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2): 261–277

[150]

Wang R, Wang C, Sun L, Liu G. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and GO annotations. BMC Genomics, 2019, 20(1): 637

[151]

Xiao Q, Wang J, Peng X, Wu F X. Detecting protein complexes from active protein interaction networks constructed with dynamic gene expression profiles. Proteome Science, 2013, 11(Suppl 1): S20

[152]

Topchy A, Jain A K, Punch W. Clustering ensembles: models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1866–1881

[153]

Asur S. An ensemble framework for clustering protein-protein interaction networks. Bioinformatics, 2007, 23(13): i29–i40

[154]

Greene D, Cagney G, Krogan N, Cunningham P. Ensemble non-negative matrix factorization methods for clustering protein-protein interactions. Bioinformatics, 2008, 24(15): 1722–1728

[155]

Wang R S, Zhang S, Wang Y, Zhang X S, Chen L. Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures. Neurocomputing, 2008, 72(1–3): 134–141

[156]

Ou-Yang X L, Dai D Q, Zhang X F. Protein complex detection via weighted ensemble clustering based on bayesian nonnegative matrix factorization. PLoS ONE, 2013, 8(5): e62158

[157]

Wu M, Ou-Yang L, Li X L. Protein complex detection via effective integration of base clustering solutions and co-complex affinity scores. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(3): 733–739

[158]

Xu B, Li K, Zheng W, Liu X, Zhang Y, Zhao Z, He Z. Protein complexes identification based on go attributed network embedding. BMC Bioinformatics, 2018, 19(1): 535

[159]

Meng X, Peng X, Wu F X, Li M. Detecting protein complex based on hierarchical compressing network embedding. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine. 2019, 215–218

[160]

Lei X, Fang M, Guo L, Wu F X. Protein complex detection based on flower pollination mechanism in multi-relation reconstructed dynamic protein networks. BMC Bioinformatics, 2019, 20(3): 131

[161]

Ma X, Sun P G, Gong M. An integrative framework of heterogeneous genomic data for cancer dynamic modules based on matrix decomposition. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI: 10.1109/TCBB.2020.3004808

[162]

Li M, Li D, Tang Y, Wu F X, Wang J. CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. International Journal of Molecular Sciences, 2017, 18(9): 1880

[163]

Wang J, Zhong J, Chen G, Li M, Wu F X, Pan Y. ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACMTransactions on Computational Biology and Bioinformatics, 2015, 12(4): 815–822

[164]

Natale M, Benso A, Di Carlo S, Ficarra E. FunMod: a cytoscape plugin for identifying functional modules in undirected protein-protein networks. Genomics, Proteomics & Bioinformatics, 2014, 12(4): 178–186

[165]

Szalay-Bek˝o M, Palotai R, Szappanos B, Kovács I A, Papp B, Csermely P. ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics, 2012, 28(16): 2202–2204

[166]

Li M, Tang Y, Wu X, Wang J, Wu F X, Pan Y. C-DEVA: detection, evaluation, visualization and annotation of clusters from biological networks. Biosystems, 2016, 150: 78–86

[167]

Kouhsar M, Zare-Mirakabad F, Jamali Y. WCOACH: protein complex prediction in weighted PPI networks. Genes & Genetic Systems, 2015, 90(5): 317–324

[168]

Srihari S, Ragan M A. Systematic tracking of dysregulated modules identifies novel genes in cancer. Bioinformatics, 2013, 29(12): 1553–1561

[169]

Li D, Pan Z, Hu G, Anderson G, He S. Active module identification from multilayer weighted gene co-expression networks: a continuous optimization approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, DOI:10.1109/TCBB.2020.2970400

[170]

De L U, Jensen L J, Brunak S, Bork P. Dynamic complex formation during the yeast cell cycle. Science, 2005, 307(5710): 724–727

[171]

Kayarkar N A, Durgude S G, Maurya B D, Pawar S V, Chate P B. Protein networks in diseases. International Journal of Drug Discovery, 2009, 1(2): 10–17

[172]

Tokuriki N, Tawfik D S. Protein dynamism and evolvability. Science, 2009, 324(5924): 203–207

[173]

Hegde S R, Manimaran P, Mande S C. Dynamic changes in protein functional linkage networks revealed by integration with gene expression data. PLoS Computational Biology, 2008, 4(11): e1000237

[174]

Tu B P, Mcknight S L. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 2005, 310(5751): 1152–1158

[175]

Shen X, Li Y, Jiang X, He T, Hu X, Yang J. Mining temporal protein complex based on the dynamic PIN weighted with connected affinity and gene co-expression. PLoS ONE, 2016, 11(4): e0153967

[176]

Liu W, Xie H. Construction and analysis of dynamic molecular networks. Progress in Biochemistry and Biophysics, 2014, 41(2): 115–125 (in Chinese)

[177]

Xia K, Xue H, Dong D, Zhu S, Wang J, Zhang Q, Hou L, Chen H, Tao R, Huang Z, Fu Z, Chen Y G, Han J D J. Identification of the proliferation/differentiation switch in the cellular network of multicellular organisms. PLoS Computational Biology, 2006, 2(11): e145

[178]

Przytycka T M, Singh M, Slonim D K. Toward the dynamic interactome: it’s about time. Briefings in Bioinformatics, 2010, 11(1): 15–29

[179]

Bossi A, Lehner B. Tissue specificity and the human protein interaction network. Molecular Systems Biology, 2009, 5(1): 260

[180]

Lichtenstein I, Charleston M A, Caetano T S, Gamble J R, Vadas M A. Active subnetwork recovery with a mechanism-dependent scoring function; with application to angiogenesis and organogenesis studies. BMC Bioinformatics, 2013, 14(1): 59

[181]

Bródka P, Saganowski S, Kazienko P. GED: the method for group evolution discovery in social networks. Social Network Analysis and Mining, 2013, 3(1): 1–14

[182]

Du N, Jiang K, Sawle A D, Frank M B, Wallace C A, Zhang A, Jarvis J N. Dynamic tracking of functional gene modules in treated juvenile idiopathic arthritis. Genome Medicine, 2015, 7(1): 109

[183]

Luo J, Song D, Liang C, Li G. Model the evolution of protein interaction network assisted with protein age. Journal of Theoretical Biology, 2013, 333: 10–17

[184]

Shen X, Yi L, Jiang X, Zhao Y, Hu X, He T, Yang J. Neighbor affinity based algorithm for discovering temporal protein complex from dynamic PPI network. Methods, 2016, 110: 90–96

[185]

Curtis R E, Yuen A, Song L, Goyal A, Xing E P. TVNViewer: an interactive visualization tool for exploring networks that change over time or space. Bioinformatics, 2011, 27(13): 1880–1881

[186]

Tian Y, Zhang B, Hoffman E P, Clarke R, Zhang Z, Shih I M, Xuan J, Herrington D M, Wang Y. KDDN: an open-source cytoscape app for constructing differential dependency networks with significant rewiring. Bioinformatics, 2014, 31(2): 287–289

[187]

Goenawan I H, Bryan K, Lynn D J. DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics, 2016, 32(17): 2713–2715

[188]

Li M, Yang J, Wu F X, Pan Y, Wang J. DyNetViewer: a cytoscape app for dynamic network construction, analysis and visualization. Bioinformatics, 2018, 34(9): 1597–1599

[189]

Wang X, Gulbahce N, Yu H. Network-based methods for human disease gene prediction. Briefings in Functional Genomics, 2011, 10(5): 280–293

[190]

Xiang J, Zhang N R, Zhang J S, Lv X Y, Li M. PrGeFNE: predicting disease-related genes by fast network embedding. Methods, 2020, DOI:10.1016/j.ymeth.2020.1006.1015

[191]

Hamed M, Spaniol C, Zapp A, Helms V. Integrative network-based approach identifies key genetic elements in breast invasive carcinoma. BMC Genomics, 2015, 16(5): S2

[192]

Barabási A L, Gulbahce N, Loscalzo J. Network medicine: a networkbased approach to human disease. Nature Reviews Genetics, 2011, 12(1): 56–68

[193]

Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, Hou L, Zhang Q, Zhang Y, Han J D. A modular network model of aging. Molecular Systems Biology, 2007, 3(1): 147

[194]

Faisal F E, Milenković T. Dynamic networks reveal key players in aging. Bioinformatics, 2014, 30(12): 1721–1729

[195]

Sun S Y, Liu Z P, Zeng T, Wang Y, Chen L. Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Scientific Reports, 2013, 3: 2268

[196]

Elia J, Glessner J T, Wang K, Takahashi N, Shtir C J, Hadley D, Sleiman P M A, Zhang H, Kim C E, Robison R, Lyon G L, Flory J H, Bradfield J P, Imielinski M, Hou C, Frackelton E C, Chiavacci R M, Sakurai T, Rabin C, Middleton F A, Thomas K A, Garris M, Mentch F, Freitag C M, Steinhausen H C, Todorov A A, Reif A, Rothenberger A, Franke B, Mick E O, Roeyers H, Buitelaar J, Lesch K P, Banaschewski T, Ebstein R P, Mulas F, Oades R D, Sergeant J, Sonuga-Barke E, Renner T J, Romanos M, Romanos J, Warnke A, Walitza S, Meyer J, Pálmason H, Seitz C, Loo S K, Smalley S L, Biederman J, Kent L, Asherson P, Anney R J L, Gaynor J W, Shaw P, Devoto M, White P S, Grant S F A, Buxbaum J D, Rapoport J L, Williams N M, Nelson S F, Faraone S V, Hakonarson H. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genetics, 2012, 44(1): 78–84

[197]

Luo X, Huang L, Han L, Luo Z, Hu F, Tieu R, Gan L. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes. Schizophrenia Bulletin, 2014, 40(6):1285–1899

[198]

Ma X, Gao L, Karamanlidis G, Gao P, Lee C F, Garcia-Menendez L, Tian R, Tan K. Revealing pathway dynamics in heart diseases by analyzing multiple differential networks. PLoS Computational Biology, 2015, 11(6): e1004332

[199]

Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, Xia J. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nature Communications, 2018, 9(1): 678

[200]

Li Y, Jin S, Lei L, Pan Z, Zou X. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Scientific Reports, 2015, 5: 9283

[201]

Li M, Gao H, Wang J, Wu F X. Control principles for complex biological networks. Briefings in Bioinformatics, 2019, 20(6): 2253–2266

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (783KB)

Supplementary files

Highlights

1665

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/