Accelerated algorithms for maximizing average happiness ratio in databases

Jiping ZHENG, Qi DONG, Xianhong QIU, Xingnan HUANG

PDF(293 KB)
PDF(293 KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156618. DOI: 10.1007/s11704-020-0178-7
LETTER

Accelerated algorithms for maximizing average happiness ratio in databases

Author information +
History +

Cite this article

Download citation ▾
Jiping ZHENG, Qi DONG, Xianhong QIU, Xingnan HUANG. Accelerated algorithms for maximizing average happiness ratio in databases. Front. Comput. Sci., 2021, 15(6): 156618 https://doi.org/10.1007/s11704-020-0178-7

References

[1]
Nanongkai D, Sarm A D, Lall A, Lipton R J, Xu J. Regret-minimizing representative databases. In: Proceedings of the 36th International Conference on Very Large Data Bases. 2010, 1114–1124
CrossRef Google scholar
[2]
Zeighami S, Wong R C. Finding average regret ratio minimizing set in database. In: Proceedings of the 35th International Conference on Data Engineering. 2019, 1722–1725
CrossRef Google scholar
[3]
Mitzenmacher M, Upfal E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005
CrossRef Google scholar
[4]
Krause A, Golovin D. Submodular function maximization. Tractability: Practical Approaches to Hard Problems, 2014, 3: 71–104
CrossRef Google scholar
[5]
Nemhauser G L, Wolsey L A, Fisher M L. An analysis of approximations for maximizing submodular set functions—I. Mathematical Programming, 1978, 14(1): 265–294
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(293 KB)

Accesses

Citations

Detail

Sections
Recommended

/