Accelerated algorithms for maximizing average happiness ratio in databases

Jiping ZHENG , Qi DONG , Xianhong QIU , Xingnan HUANG

Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156618

PDF (293KB)
Front. Comput. Sci. ›› 2021, Vol. 15 ›› Issue (6) : 156618 DOI: 10.1007/s11704-020-0178-7
LETTER

Accelerated algorithms for maximizing average happiness ratio in databases

Author information +
History +
PDF (293KB)

Cite this article

Download citation ▾
Jiping ZHENG, Qi DONG, Xianhong QIU, Xingnan HUANG. Accelerated algorithms for maximizing average happiness ratio in databases. Front. Comput. Sci., 2021, 15(6): 156618 DOI:10.1007/s11704-020-0178-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nanongkai D, Sarm A D, Lall A, Lipton R J, Xu J. Regret-minimizing representative databases. In: Proceedings of the 36th International Conference on Very Large Data Bases. 2010, 1114–1124

[2]

Zeighami S, Wong R C. Finding average regret ratio minimizing set in database. In: Proceedings of the 35th International Conference on Data Engineering. 2019, 1722–1725

[3]

Mitzenmacher M, Upfal E. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005

[4]

Krause A, Golovin D. Submodular function maximization. Tractability: Practical Approaches to Hard Problems, 2014, 3: 71–104

[5]

Nemhauser G L, Wolsey L A, Fisher M L. An analysis of approximations for maximizing submodular set functions—I. Mathematical Programming, 1978, 14(1): 265–294

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (293KB)

Supplementary files

Article highlights 1

Article highlights 2

2177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/