EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption

Yong XIAO, Kaihong ZHENG, Supaporn LONAPALAWONG, Wenjie LU, Zexian CHEN, Bin QIAN, Tianye ZHANG, Xin WANG, Wei CHEN

PDF(4271 KB)
PDF(4271 KB)
Front. Comput. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 162604. DOI: 10.1007/s11704-020-0088-8
Information Systems
RESEARCH ARTICLE

EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption

Author information +
History +

Abstract

Closely related to the economy, the analysis and management of electricity consumption has been widely studied. Conventional approaches mainly focus on the prediction and anomaly detection of electricity consumption, which fails to reveal the in-depth relationships between electricity consumption and various factors such as industry, weather etc.. In the meantime, the lack of analysis tools has increased the difficulty in analytical tasks such as correlation analysis and comparative analysis. In this paper, we introduce EcoVis, a visual analysis system that supports the industrial-level spatio-temporal correlation analysis in the electricity consumption data. We not only propose a novel approach to model spatio-temporal data into a graph structure for easier correlation analysis, but also introduce a novel visual representation to display the distributions of multiple instances in a single map. We implement the system with the cooperation with domain experts. Experiments are conducted to demonstrate the effectiveness of our method.

Graphical abstract

Keywords

spatio-temporal data / electricity consumption / correlation analysis / visual analysis / visualization

Cite this article

Download citation ▾
Yong XIAO, Kaihong ZHENG, Supaporn LONAPALAWONG, Wenjie LU, Zexian CHEN, Bin QIAN, Tianye ZHANG, Xin WANG, Wei CHEN. EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption. Front. Comput. Sci., 2022, 16(2): 162604 https://doi.org/10.1007/s11704-020-0088-8

References

[1]
Ahmad A , Hassan M Y , Abdullah M P , Abdul Rahman H , Hussin F , Abdullah H , Rahman S . A review on applications of ann and svm for building electrical energy consumption forecasting. Renewable and Sustainable Energy Reviews, 2014, 33 : 102– 109
CrossRef Google scholar
[2]
Bianco V , Manca O , Nardini S . Electricity consumption forecasting in italy using linear regression models. Journal of Energy, 2009, 34( 9): 1413– 1421
CrossRef Google scholar
[3]
Janetzko H , Stoffel F , Mittelstädt S , Keim D A . Computers & graphics anomaly detection for visual analytics of power consumption data. Journal of Computers and Graphics, 2013, 38 : 1– 11
[4]
Siddhartha, Pai M Y. Analysis of weather parameters on electrical energy consumption of a residential building. In: Proceedings of the 2nd International Conference on Advanced Computational and Communication Paradigms. 2019, 1–7
[5]
Harris J L , Liu L M . Dynamic structural analysis and forecasting of residential electricity consumption. International Journal of Forecasting, 1993, 9( 4): 437– 455
CrossRef Google scholar
[6]
Podgornik A , Sucic B , Blazic B . Effects of customized consumption feedback on energy efficient behaviour in low-income households. Journal of Cleaner Production, 2016, 130 : 25– 34
CrossRef Google scholar
[7]
Hong J , Shen G Q , Guo S , Xue F , Zheng W . Energy use embodied in China’s construction industry: a multi-regional input-output analysis. Renewable and Sustainable Energy Reviews, 2016, 53 : 1303– 1312
CrossRef Google scholar
[8]
Zhou F , Lin X , Liu C , Zhao Y , Xu P , Ren L , Xue T , Ren L . A survey of visualization for smart manufacturing. Journal of Visualization, 2019, 22( 2): 419– 435
CrossRef Google scholar
[9]
Overbye T J, Weber J D. New methods for the visualization of electric power system information. In: Proceedings of IEEE Symposium on Information Visualization. 2000, 131–136
[10]
Youngl J , Greenz T . Building quality full-graphics displays. IEEE Computer Applications in Power, 1992, 5( 2): 17– 22
CrossRef Google scholar
[11]
Gegner K M, Overbye T J, Shetye K S, Weber J D. Visualization of power system wide-area, time varying information. In: Proceedings of IEEE Power and Energy Conference at Illinois. 2016, 1–4
[12]
Overbye T, Rantanen E, Judd S. Electric power control center visualization using geographic data views. In: Proceedings of iREP Symposium— Bulk Power System Dynamics and Control — VⅡ, Revitalizing Operational Reliability. 2007
[13]
Boardman E. The role of integrated distribution management systems in smart grid implementations. In: Proceedings of IEEE PES General Meeting. 2010, 1–6
[14]
Wong P C , Schneider K , Mackey P , Foote H , Chin Jr. G , Guttromson R , Thomas J . A novel visualization technique for electric power grid analytics. IEEE Transactions on Visualization and Computer Graphics, 2009, 15( 3): 410– 423
CrossRef Google scholar
[15]
Mao Z, Huang H, Davis K. W4ips: a web-based interactive power system simulation environment for power system security analysis. In: Proceedings of the 53rd Hawaii International Conference on System Sciences. 2020
[16]
Wang Z Q, Jiang Y, Chen Z, Yang Y. Simulation and Visualization System of Power Grid Security Checking. In: Proceedings of International Conference on Modeling, Simulation and Analysis. 2018, 450–457
[17]
Tufte E . The Visual Display of Quantitative Information. Graphics Press, 2001,
[18]
Sato I, Diptarama, Shinohara A. Visualization and analysis of electrical energy consumption in laboratories. In: Proceedings of the 5th ⅡAI International Congress on Advanced Applied Informatics. 2016, 509–512
[19]
Hanrahan B , Lightbody G , Staudt L , Leahy P . A powerful visualization technique for electricity supply and demand at industrial sites with combined heat and power and wind generation. Renewable and Sustainable Energy Reviews, 2014, 31 : 860– 869
CrossRef Google scholar
[20]
Masoodian M, Lugrin B, Bühling R, Ermolin P, Andre E. Time-pie visualization: providing contextual information for energy consumption data. In: Proceedings of the International Conference on Information Visualisation. 2013
[21]
Monigatti P, Apperley M, Rogers B. Power and energy visualization for the micro-management of household electricity consumption. In: Proceedings of the International Conference on Advanced Visual Interfaces. 2010, 325–328
[22]
Mattinen M K , Heljo J , Vihola J , Kurvinen A , Lehtoranta S , Nissinen A . Modeling and visualization of residential sector energy consumption and greenhouse gas emissions. Journal of Cleaner Production, 2014, 81 : 70– 80
CrossRef Google scholar
[23]
Goyal P , Chhetri S R , Canedo A . dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Journal of Knowledge-Based Systems, 2020, 187 : 104816–
[24]
Bae J , Helldin T , Riveiro M . Understanding indirect causal relationships in node-link graphs. Journal of Computer Graphics Forum, 2017, 36( 3): 411– 421
CrossRef Google scholar
[25]
Schwank J, Schöffel S. Visualizing uncertainty in node-link diagrams − a user study. In: Proceedings of International Conference on Applied Human Factors and Ergonomics. 2017, 495–507
[26]
Büschel W, Vogt S, Dachselt R. Investigating link attributes of graph visualizations in mobile augmented reality. In: Proceedings of the CHI 2018 Workshop on Data Visualization on Mobile Devices. 2018
[27]
Holten D , Isenberg P , Wijk J J V , Fekete J D . An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs. In: Proceedings of the IEEE Pacific Visualization Symposium, 2011, 195– 202
[28]
Peeters C F W. Social network analysis of corruption structures: Adjacency matrices supporting the visualization and quantification of layeredness. 2019, arXiv preprint arXiv: 1909.07648
[29]
Shen Z, Ma K L. Path visualization for adjacency matrices. In: Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization. 2007, 83–90
[30]
Garcia-Ramos C , Lin J J , Prabhakaran V , Hermann B P . Developmental reorganization of the cognitive network in pediatric epilepsy. PLoS ONE, 2015, 10( 10): 1– 14
[31]
Beck F, Burch M, Diehl S, Weiskopf D. The state of the art in visualizing dynamic graphs. In: Proceedings of Eurographics Conference on Visualization. 2014
[32]
Kumar G , Garland M . Visual exploration of complex time-varying graphs. IEEE Transactions on Visualization and Computer Graphics, 2006, 12( 5): 805– 812
CrossRef Google scholar
[33]
Bederson B B, Boltman A. Does animation help users build mental maps of spatial information? In: Proceedings of IEEE Symposium on Information Visualization. 1999, 28–35
[34]
Shanmugasundaram M, Irani P, Gutwin C. Can smooth view transitions facilitate perceptual constancy in node-link diagrams? In: Proceedings of Graphics Interface. 2007, 71–78
[35]
Robertson G , Fernandez R , Fisher D , Lee B , Stasko J . Effectiveness of animation in trend visualization. IEEE Transactions on Visualization and Computer Graphics, 2008, 14( 6): 1325– 1332
CrossRef Google scholar
[36]
Farrugia M, Hurleyy N, Quigley A. Exploring temporal ego networks using small multiples and tree-ring layouts. In: Proceedings of the 4th International Conference on Advances in Computer-Human Interactions. 2011, 79–88
[37]
Bach B, Pietriga E, Fekete J D. Visualizing dynamic networks with matrix cubes. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2014, 877–886
[38]
Heer J , Shneiderman B . Interactive dynamics for visual analysis. Communications of the ACM, 2012, 55( 4): 45– 54
CrossRef Google scholar
[39]
Boyandin I , Bertini E , Lalanne D . A qualitative study on the exploration of temporal changes in flow maps with animation and smallmultiples. Computer Graphics Forum, 2012, 1005– 1014
CrossRef Google scholar
[40]
Zhao Y , Wang L , Li S , Zhou F , Lin X , Lu Q , Ren L . A visual analysis approach for understanding durability test data of automotive products. ACM Transactions on Intelligent Systems and Technology, 2019, 10( 6): 1– 23
[41]
Singh U, Hur M, Dorman K, Wurtele E. MetaOmGraph : a workbench for interactive exploratory data analysis of large expression datasets. 2019, 26: 1–19
[42]
Li J , Martens J B , Van Wijk J J . Judging correlation from scatterplots and parallel coordinate plots. Information Visualization, 2010, 9( 1): 13– 30
CrossRef Google scholar
[43]
Köthur P , Witt C , Sips M , Marwan N , Schinkel S , Dransch D . Visual analytics for correlation-based comparison of time series ensembles. Computer Graphics Forum, 2015, 34( 3): 411– 420
CrossRef Google scholar
[44]
Du Y , Malik A , Zhou L , Zhou Y . A correlation visual analytics system for air quality. Chinese Journal of Electronics, 2018, 27( 5): 920– 926
CrossRef Google scholar
[45]
Zhou F , Lin X , Luo X , Zhao Y , Chen Y , Chen N , Gui W . Visually enhanced situation awareness for complex manufacturing facility monitoring in smart factories. Journal of Visual Languages and Computing, 2018, 44 : 58– 69
CrossRef Google scholar
[46]
Zhao Y , Luo X , Lin X , Wang H , Kui X , Zhou F , Wang J , Chen Y , Chen W . Visual analytics for electromagnetic situation awareness in radio monitoring and management. IEEE Transactions on Visualization and Computer Graphics, 2020, 26( 1): 590– 600
CrossRef Google scholar
[47]
Elmqvist N , Dragicevic P , Fekete J D . Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation. IEEE Transactions on Visualization and Computer Graphics, 2008, 14( 6): 1141– 1148
[48]
Wang J , Mueller K . The visual causality analyst: an interactive interface for causal reasoning. IEEE transactions on visualization and computer graphics, 2016, 22( 1): 230– 239
CrossRef Google scholar
[49]
Yang F , Shah S , Xiao D , Chen T . Improved correlation analysis and visualization of industrial alarm data. ISA Transactions, 2012, 51( 4): 499– 506
CrossRef Google scholar
[50]
Zhang Z , Mcdonnell K T , Zadok E , Mueller K . Visual correlation analysis of numerical and categorical data on the correlation map. IEEE transactions on visualization and computer graphics, 2015, 21( 2): 289– 303
CrossRef Google scholar
[51]
Tao J, Shi L, Zhuang Z, Huang C, Yu R, Su P, Wang C, Chen Y. Visual analysis of collective anomalies through high-order correlation graph. In: Proceedings of IEEE Pacific Visualization Symposium. 2018, 150–159
[52]
Shi L, Liao Q, He Y, Li R, Striegel A, Su Z. Save: sensor anomaly visualization engine. In: Proceedings of IEEE Conference on Visual Analytics Science and Technology. 2011, 201–210
[53]
Du Q , Faber V , Gunzburger M . Centroidal voronoi tessellations: applications and algorithms. SIAM Review, 1999, 41( 4): 637– 676
CrossRef Google scholar
[54]
Hotelling H . Analysis of a complex of statistical variables with principal components. Journal of Educational Psychology, 1933, 24 : 417– 441
CrossRef Google scholar
[55]
Kruskal J . Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 1964, 29( 1): 1– 27
CrossRef Google scholar
[56]
Van der Maaten L, Hinton G. Visualizing high-dimensional data using t-SNE. Journal of Machine learning Research, 2008, 9: 2579−2605
[57]
Jacomy M , Heymann S , Venturini T , Bastian M . Forceatlas2, a continuous graph layout algorithm for handy network visualization. Medialab center of Research, 2011, 560 : 4–
[58]
Hachul S, Jünger M. Drawing large graphs with a potential-field-based multilevel algorithm. In: Proceedings of International Symposium on Graph Drawing. 2004, 285–295

Acknowledgements

This work was supported by the Science and Technology Project of China Southern Power Grid Corporation (ZBKJXM20180157), and the National Natural Science Foundation of China (Grant Nos.61772456, 61761136020).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4271 KB)

Accesses

Citations

Detail

Sections
Recommended

/