Multi-task regression learning for survival analysis via prior information guided transductive matrix completion

Lei CHEN, Kai SHAO, Xianzhong LONG, Lingsheng WANG

PDF(552 KB)
PDF(552 KB)
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (5) : 145312. DOI: 10.1007/s11704-019-8374-z
RESEARCH ARTICLE

Multi-task regression learning for survival analysis via prior information guided transductive matrix completion

Author information +
History +

Abstract

Survival analysis aims to predict the occurrence time of a particular event of interest, which is crucial for the prognosis analysis of diseases. Currently, due to the limited study period and potential losing tracks, the observed data inevitably involve some censored instances, and thus brings a unique challenge that distinguishes from the general regression problems. In addition, survival analysis also suffers from other inherent challenges such as the high-dimension and small-sample-size problems. To address these challenges, we propose a novel multi-task regression learning model, i.e., prior information guided transductive matrix completion (PigTMC) model, to predict the survival status of the new instances. Specifically, we use the multi-label transductive matrix completion framework to leverage the censored instances together with the uncensored instances as the training samples, and simultaneously employ the multi-task transductive feature selection scheme to alleviate the overfitting issue caused by high-dimension and small-sample-size data. In addition, we employ the prior temporal stability of the survival statuses at adjacent time intervals to guide survival analysis. Furthermore, we design an optimization algorithm with guaranteed convergence to solve the proposed PigTMC model. Finally, the extensive experiments performed on the real microarray gene expression datasets demonstrate that our proposed model outperforms the previously widely used competing methods.

Keywords

survival analysis / matrix completion / multi-task regression / transductive learning / multi-task feature selection

Cite this article

Download citation ▾
Lei CHEN, Kai SHAO, Xianzhong LONG, Lingsheng WANG. Multi-task regression learning for survival analysis via prior information guided transductive matrix completion. Front. Comput. Sci., 2020, 14(5): 145312 https://doi.org/10.1007/s11704-019-8374-z

References

[1]
Fernández T, Rivera N, Teh Y W. Gaussian processes for survival analysis. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016, 5021–5029
[2]
Efron B. The efficiency of Cox’s likelihood function for censored data. Journal of the American Statistical Association, 1977, 72(359): 557–565
CrossRef Google scholar
[3]
Therneau T M, Lumley T. Package ‘survival’. R Top Doc, 2015, 128
[4]
Li Y, Rakesh V, Reddy C K. Project success prediction in crowdfunding environments. In: Proceedings of ACM International Conference on Web Search and Data Mining. 2016, 247–256
CrossRef Google scholar
[5]
Crowther M J, Lambert P C. A general framework for parametric survival analysis. Statistics in Medicine, 2014, 33(30): 5280–5297
CrossRef Google scholar
[6]
Lee E T, Wang J. Statistical Methods for Survival Data Analysis. New Jersey: John Wiley & Sons, 2003
CrossRef Google scholar
[7]
Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine, 1997, 16(4): 385–395
CrossRef Google scholar
[8]
Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. Journal of Statistical Software, 2011, 39(5): 1
CrossRef Google scholar
[9]
Li Y, Wang L,Wang J, Wang J, Ye J, Reddy C K. Transfer learning for survival analysis via efficient L2, 1-norm regularized Cox regression. In: Proceedings of IEEE International Conference on Data Mining. 2016, 231–240
CrossRef Google scholar
[10]
Li Y, Wang J, Ye J, Reddy C K. A multi-task learning formulation for survival analysis. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 1715–1724
CrossRef Google scholar
[11]
Li Y, Yang T, Zhou J, Ye J. Multi-task learning based survival analysis for predicting Alzheimer’s disease progression with multi-source block-wise missing data. In: Proceedings of SIAM International Conference on Data Mining. 2018, 288–296
CrossRef Google scholar
[12]
Chen L, Zhang H, Lu J, Thung K, Aibaidula A, Liu L, Chen S, Jin L, Wu J, Wang Q, Zhou L, Shen D G. Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas. IEEE Transactions on Medical Imaging, 2018, 37(8): 1775–1787
CrossRef Google scholar
[13]
Goldberg A, Recht B, Xu J, Nowak R, Zhu J. Transduction with matrix completion: three birds with one stone. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems. 2010, 757–765
[14]
Cabral R, De la Torre F, Costeira J P, Bernardino A. Matrix completion for weakly-supervised multi-label image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1), 121–135
CrossRef Google scholar
[15]
Tulyakov S, Alameda-Pineda X, Ricci E, Yiu L, Cohn J F, Sebe N. Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 2396–2404
CrossRef Google scholar
[16]
Cox D R. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Methodological), 1972, 34(2): 187–202
CrossRef Google scholar
[17]
Indrayan A, Bansal A K. The methods of survival analysis for clinicians. Indian Pediatrics, 2010, 47(9): 743–748
CrossRef Google scholar
[18]
Wang P, Li Y, Reddy C K. Machine learning for survival analysis: a survey. ACM Computing Surveys (CSUR), 2019, 51(6): 110
CrossRef Google scholar
[19]
Aitkin M, Clayton D. The fitting of exponential, Weibull and extreme value distributions to complex censored survival data using GLIM. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1980, 29(2): 156–163
CrossRef Google scholar
[20]
Bennett S. Log-logistic regression models for survival data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 1983, 32(2): 165–171
CrossRef Google scholar
[21]
Li Y, Xu K S, Reddy C K. Regularized parametric regression for highdimensional survival analysis. In: Proceedings of SIAM International Conference on Data Mining. 2016, 765–773
CrossRef Google scholar
[22]
Miller R, Halpern J. Regression with censored data. Biometrika, 1982, 69(3): 521–531
CrossRef Google scholar
[23]
Koul H, Susarla V, Van Ryzin J. Regression analysis with randomly right-censored data. The Annals of Statistics, 1981, 9(6): 1276–1288
CrossRef Google scholar
[24]
Tobin J. Estimation of relationships for limited dependent variables. Econometrica, 1958, 26(1): 24–36
CrossRef Google scholar
[25]
Buckley J, James I. Linear regression with censored data. Biometrika, 1979, 66(3): 429–436
CrossRef Google scholar
[26]
Wang S, Nan B, Zhu J, Beer D G. Doubly penalized Buckley–James method for survival data with high-dimensional covariates. Biometrics, 2008, 64(1): 132–140
CrossRef Google scholar
[27]
Li Y, Vinzamuri B, Reddy C K. Regularized weighted linear regression for high-dimensional censored data. In: Proceedings of SIAM International Conference on Data Mining. 2016, 45–53
CrossRef Google scholar
[28]
Ye W, Chen L, Yang G, Dai H, Xiao F. Anomaly-tolerant traffic matrix estimation via prior information guided matrix completion. IEEE Access, 2017, 5: 3172–3182
CrossRef Google scholar
[29]
Xu Y, Yin W. A globally convergent algorithm for nonconvex optimization based on block coordinate update. Journal of Scientific Computing, 2017, 72(2): 700–734
CrossRef Google scholar
[30]
Liu J, Ji S, Ye J. Multi-task feature learning via efficient l 2, 1-norm minimization. In: Proceedings of AUAI Conference on Uncertainty in Artificial Intelligence. 2009, 339–348
[31]
Sørlie T, Tibshirani R, Parker J, Hastie T, Maron J S, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou C M, Lønning P E, Brown P O, Børresen-Dale A L, Botstein D. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences, 2003, 100(14): 8418–8423
CrossRef Google scholar
[32]
Van’t Veer L J, Dai H, Van De Vijver M J, He Y D, Hart A A M, Mao M, Peterse H L, Wan Der Kooy K, Marton M J, Witteveen A T, Schreiber G J, Kerkhoven R M, Roberts C, Linsley P S, Bernards R, Friend S H. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871): 530
CrossRef Google scholar
[33]
Beer D G, Kardia S L R, Huang C C, Giordano T J, Levin A M, Misek D E, Lin L, Chen G, Tarek G, Thomas D G, Lizyness M L, Kuick R, Hayasaka S, Taylor J, Lannettoni M D, Orringer M B, Hanash S. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Medicine, 2002, 8(8): 816
CrossRef Google scholar
[34]
van Houwelingen H C, Bruinsma T, Hart A A M, Van’t Veer L J, Wessels L F. Cross-validated Cox regression on microarray gene expression data. Statistics in Medicine, 2006, 25(18): 3201–3216
CrossRef Google scholar
[35]
Rosenwald A,Wright G, Wiestner A, Chan W C, Connors J M, Campo E, Gascoyne R D, Grogan T M, Muller-Hermelink H K, Smeland E B, Chiorazzi M, Giltnane J M, Hurt E M, Zhao H, Averett L, Henrickson S, Yang L, Poweel J, Wilson W, Jaffe E S, Simon R, Kiausner R D, Montserrat E, Bosch F, Greiner T, Weisenburger D D, Sanger W G, Dave B J, Lynch J C, Vose J, Armitage J O, Fisher R I, Miller T P, LeBlanc M, Ott G, Kvalo y S, Holte H, Delabie J, Staudt L M. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell, 2003, 3(2): 185–197
CrossRef Google scholar
[36]
Harrell Jr F E, Califf R M, Pryor D B, Lee K L, Rosati R A. Evaluating the yield of medical tests. Jama, 1982, 247(18): 2543–2546
CrossRef Google scholar
[37]
Therneau T. A package for survival analysis in S. R Package Version 2.37-4. 2013
[38]
Yang Y, Zou H. A cocktail algorithm for solving the elastic net penalized Cox’s regression in high dimensions. Statistics and its Interface, 2013, 6(2): 167–173
CrossRef Google scholar
[39]
Wang L, Li Y, Zhou J, Zhu D, Ye J. Multi-task survival analysis. In: Proceedings of IEEE International Conference on Data Mining. 2017, 485–494
CrossRef Google scholar
[40]
Faraway J J. Practical Regression and ANOVA Using R. 2002
[41]
Wang Z, Wang C Y. Buckley-James boosting for survival analysis with high-dimensional biomarker data. Statistical Applications in Genetics and Molecular Biology, 2010, 9(1): 1–31
CrossRef Google scholar
[42]
Zhou J, Chen J, Ye J. Malsar: multi-task learning via structural regularization. Arizona State University, 2011, 21
[43]
Alameda-Pineda X, Ricci E, Yan Y, Sebe N. Recognizing emotions from abstract paintings using non-linear matrix completion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 5240–5248
CrossRef Google scholar
[44]
Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(552 KB)

Accesses

Citations

Detail

Sections
Recommended

/