Multipath affinage stacked—hourglass networks for human pose estimation
Guoguang HUA , Lihong LI , Shiguang LIU
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (4) : 144701
Multipath affinage stacked—hourglass networks for human pose estimation
Recently, stacked hourglass network has shown outstanding performance in human pose estimation. However, repeated bottom-up and top-down stride convolution operations in deep convolutional neural networks lead to a significant decrease in the initial image resolution. In order to address this problem, we propose to incorporate affinage module and residual attention module into stacked hourglass network for human pose estimation. This paper introduces a novel network architecture to replace the stacked hourglass network of up-sampling operation for getting high-resolution features. We refer to the architecture as an affinage module which is critical to improve the performance of the stacked hourglass network. Additionally, we also propose a novel residual attention module to increase the supervision of upsample process. The effectiveness of the introduced module is evaluated on standard benchmarks. Various experimental results demonstrated that our method can achieve more accurate and more robust human pose estimation results in images with complex background.
human pose estimation / stacked hourglass network / affinage module / residual attention module
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Supplementary files
/
| 〈 |
|
〉 |