Extreme vocabulary learning
Hanze DONG , Zhenfeng SUN , Yanwei FU , Shi ZHONG , Zhengjun ZHANG , Yu-Gang JIANG
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (6) : 146315
Extreme vocabulary learning
Regarding extreme value theory, the unseen novel classes in the open-set recognition can be seen as the extreme values of training classes. Following this idea, we introduce the margin and coverage distribution to model the training classes. A novel visual-semantic embedding framework – extreme vocabulary learning (EVoL) is proposed; the EVoL embeds the visual features into semantic space in a probabilistic way. Notably, we adopt the vast open vocabulary in the semantic space to help further constraint the margin and coverage of training classes. The learned embedding can directly be used to solve supervised learning, zero-shot learning, and open set recognition simultaneously. Experiments on two benchmark datasets demonstrate the effectiveness of the proposed framework against conventional ways.
vocabulary-informed learning / zero-shot learning / extreme value theory
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
Supplementary files
/
| 〈 |
|
〉 |