Ordinal factorization machine with hierarchical sparsity

Shaocheng GUO , Songcan CHEN , Qing TIAN

Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (1) : 67 -83.

PDF (822KB)
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (1) : 67 -83. DOI: 10.1007/s11704-019-7290-6
RESEARCH ARTICLE

Ordinal factorization machine with hierarchical sparsity

Author information +
History +
PDF (822KB)

Abstract

Ordinal regression (OR) or classification is a machine learning paradigm for ordinal labels. To date, there have been a variety of methods proposed including kernel based and neural network based methods with significant performance. However, existing OR methods rarely consider latent structures of given data, particularly the interaction among covariates, thus losing interpretability to some extent. To compensate this, in this paper, we present a new OR method: ordinal factorization machine with hierarchical sparsity (OFMHS), which combines factorization machine and hierarchical sparsity together to explore the hierarchical structure behind the input variables. For the sake of optimization, we formulate OFMHS as a convex optimization problem and solve it by adopting the efficient alternating directions method of multipliers (ADMM) algorithm. Experimental results on synthetic and real datasets demonstrate the superiority of our method in both performance and significant variable selection.

Keywords

ordinal regression / factorization machine / hierarchical sparsity / interaction modelling

Cite this article

Download citation ▾
Shaocheng GUO, Songcan CHEN, Qing TIAN. Ordinal factorization machine with hierarchical sparsity. Front. Comput. Sci., 2020, 14(1): 67-83 DOI:10.1007/s11704-019-7290-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu T Y. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval, 2009, 3(3): 225–331

[2]

Lee S K, Cho Y H, Kim S H. Collaborative filtering with ordinal scalebased implicit ratings for mobile music recommendations. Information Sciences, 2010, 180(11): 2142–2155

[3]

Kim M, Pavlovic V. Structured output ordinal regression for dynamic facial emotion intensity prediction. In: Proceedings of European Conference on Computer Vision. 2010, 649–662

[4]

Rudovic O, Pavlovic V, Pantic M. Multi-output laplacian dynamic ordinal regression for facial expression recognition and intensity estimation. In: Proceedings of the the 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012, 2634–2641

[5]

Kramer S, Widmer G, Pfahringer B, De Groeve M. Prediction of ordinal classes using regression trees. Fundamenta Informaticae, 2001, 14(1–2): 1–13

[6]

Kotsiantis S, Pintelas P. A cost sensitive technique for ordinal classifi- cation problems. In: Proceedings of the Hellenic Conference on Artifi- cial Intelligence. 2004, 220–229

[7]

Lin H T, Li L. Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Computation, 2012, 24(5): 1329–1367

[8]

Waegeman W, Boullart L. An ensemble of weighted support vector machines for ordinal regression. Transactions on Engineering, Computing and Technology, 2006, 12(3): 71–75

[9]

Chang K Y, Chen C S, Hung Y P. Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. 2011, 585–592

[10]

Chu W, Keerthi S. Support vector ordinal regression. Neural Computation, 2007, 19(3): 792–815

[11]

Sun B Y, Li J, Wu Dash D, Zhang X M, Li W B. Kernel discriminant learning for ordinal regression. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(6): 906–910

[12]

Chu W, Ghahramani Z. Gaussian processes for ordinal regression. Journal of Machine Learning Research, 2005, 6(7): 1019–1041

[13]

Duda R, Hart P, Stork D. Pattern Classification. John Wiley & Sons, 2012

[14]

Rendle S. Factorization machines. In: Proceedings of the 10th International Conference on Data Mining. 2010, 995–1000

[15]

Yamada M, Lian W, Goyal A, Chen J, Wimalawarne K, Khan S, Kaski S, Mamitsuka H, Chang Y. Convex factorization machine for regression. 2015, arXiv preprint arXiv:1507.01073

[16]

Blondel M, Fujino A, Ueda N. Convex factorization machines. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2015, 19–35

[17]

Fukunaga K. Introduction to Statistical Pattern Recognition. Elsevier, 2013

[18]

Bien J, Taylor J, Tibshirani R. A lasso for hierarchical interactions. Annals of Statistics, 2012, 41(3): 1111–1141

[19]

Yan X, Bien J. Hierarchical sparse modeling: a choice of two regularizers. 2015, arXiv preprint arXiv:1512.01631

[20]

Yuan M, Joseph V R, Zou H. Structured variable selection and estimation. The Annals of Applied Statistics, 2009, 3(4): 1738–1757

[21]

Haris A, Witten D, Simon N. Convex modeling of interactions with strong heredity. Journal of Computational and Graphical Statistics, 2016, 25(4): 981–1004

[22]

Zhao P, Rocha G, Yu B. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 2009, 37(6A): 3468–3497

[23]

Radchenko P, James G M. Variable selection using adaptive nonlinear interaction structures in high dimensions. Journal of the American Statistical Association, 2011, 105(492): 1541–1553

[24]

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011, 3(1): 1–122

[25]

Blondel M, Fujino A, Ueda N, Ishihata M. Higher-order factorization machines. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016, 3359–3368

[26]

Blondel M, Ishihata M, Fujino A, Ueda N. Polynomial networks and factorization machines: new insights and efficient training algorithms. In: Proceedings of the International Conference on Machine Learning. 2016, 850–858

[27]

Jacob L, Obozinski G, Vert J P. Group lasso with overlap and graph lasso. In: Proceedings of the 26th International Conference on Machine Learning. 2009, 433–440

[28]

She Y, Wang Z, Jiang H. Group regularized estimation under structural hierarchy. Journal of the American Statistical Association, 2018, 113(521): 445–454

[29]

Lim M, Hastie T. Learning interactions via hierarchical group-lasso regularization. Journal of Computational and Graphical Statistics, 2015, 24(3): 627–654

[30]

Bach F, Jenatton R, Mairal J, Obozinski G. Structured sparsity through convex optimization. Statistical Science, 2012, 27(4): 450–468

[31]

Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202

[32]

Lu C, Zhu C, Xu C, Yan S, Lin Z. Generalized singular value thresholding. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015, 1805–1811

[33]

Cai J F, Candès E J, Shen Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 2010, 20(4): 1956–1982

[34]

Gutierrez P, Perezortiz M, Sanchezmonedero J, Fernandeznavarro F, Hervasmartinez C. Ordinal regression methods: survey and experimental study. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 127–146

[35]

Xu B, Bu J, Chen C, Cai D. An exploration of improving collaborative recommender systems via user-item subgroups. In: Proceedings of the International Conference on World Wide Web. 2012, 21–30

[36]

Rendle S. Factorization machines with libFM. ACM Transactions on Intelligent Systems and Technology (TIST), 2012, 3(3): 57

[37]

Rhee S Y, Taylor J, Wadhera G, Benhur A, Brutlag D L, Shafer R W. Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proceedings of the National Academy of Sciences, 2006, 103(46): 17355–17360

[38]

Kang Z, Peng C, Cheng Q. Robust PCA via nonconvex rank approximation. In: Proceedings of the International Conference on Data Mining (ICDM). 2015, 211–220

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (822KB)

Supplementary files

Article highlights

867

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/