Algebraic criteria for finite automata understanding of regular language

Yongyi YAN, Jumei YUE, Zhumu FU, Zengqiang CHEN

PDF(210 KB)
PDF(210 KB)
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (5) : 1148-1150. DOI: 10.1007/s11704-019-6525-x
LETTER

Algebraic criteria for finite automata understanding of regular language

Author information +
History +

Cite this article

Download citation ▾
Yongyi YAN, Jumei YUE, Zhumu FU, Zengqiang CHEN. Algebraic criteria for finite automata understanding of regular language. Front. Comput. Sci., 2019, 13(5): 1148‒1150 https://doi.org/10.1007/s11704-019-6525-x

References

[1]
Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-tensor Product of Matrices and Its Applications. Singapore: World Scientific Publishing Co. Pte. Ltd., 2012
CrossRef Google scholar
[2]
Xu X R, Hong Y G. Matrix expression and reachability analysis of finite automata. Journal of Control Theory and Applications, 2012, 10(2): 210–215
CrossRef Google scholar
[3]
Yan Y Y, Chen Z Q, Liu Z X. Semi-tensor product of matrices approach to reachability of finite automata with application to language recognition. Frontiers of Computer Science, 2014, 8(6): 948–957
CrossRef Google scholar
[4]
Yue J M, Yan Y Y, Chen Z Q, Jin X. Identification of predictors of Boolean networks from observed attractor states. Mathematical Methods in the Applied Sciences, 2019, DOI:10.1002/mma.5616
CrossRef Google scholar
[5]
Li F F, Yu Z X. Feedback control and output feedback control for the stabilisation of switched Boolean networks. International Journal of Control, 2015, 89(2): 337–342
CrossRef Google scholar
[6]
Yue J M, Yan Y Y, Chen Z Q. Three matrix conditions for the reduction of finite automata based on the theory of semi-tensor product of matrices. SCIENCE CHINA Information Sciences, 2019, DOI: 10.1007/s11432-018-9739-9

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(210 KB)

Accesses

Citations

Detail

Sections
Recommended

/