A primal perspective for indefinite kernel SVM problem
Hui XUE , Haiming XU , Xiaohong CHEN , Yunyun WANG
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (2) : 349 -363.
A primal perspective for indefinite kernel SVM problem
Indefinite kernel support vector machine (IKSVM) has recently attracted increasing attentions in machine learning. Since IKSVM essentially is a non-convex problem, existing algorithms either change the spectrum of indefinite kernel directly but risking losing some valuable information or solve the dual form of IKSVM whereas suffering from a dual gap problem. In this paper, we propose a primal perspective for solving the problem. That is, we directly focus on the primal form of IKSVM and present a novel algorithm termed as IKSVM-DC for binary and multi-class classification. Concretely, according to the characteristics of the spectrum for the indefinite kernel matrix, IKSVM-DC decomposes the primal function into the subtraction of two convex functions as a difference of convex functions (DC) programming. To accelerate convergence rate, IKSVM-DC combines the classical DC algorithm with a line search step along the descent direction at each iteration. Furthermore, we construct a multi-class IKSVM model which can classify multiple classes in a unified form. A theoretical analysis is then presented to validate that IKSVM-DC can converge to a local minimum. Finally, we conduct experiments on both binary and multi-class datasets and the experimental results show that IKSVM-DC is superior to other state-of-the-art IKSVM algorithms.
indefinite kernel / support vector machine / multi-class classification / non-convex optimization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
Supplementary files
/
| 〈 |
|
〉 |