Real-time visual tracking using complementary kernel support correlation filters

Zhenyang SU , Jing LI , Jun CHANG , Bo DU , Yafu XIAO

Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (2) : 417 -429.

PDF (1604KB)
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (2) : 417 -429. DOI: 10.1007/s11704-018-8116-1
RESEARCH ARTICLE

Real-time visual tracking using complementary kernel support correlation filters

Author information +
History +
PDF (1604KB)

Abstract

Despite demonstrated success of SVM based trackers, their performance remains a boosting room if carefully considering the following factors: first, the tradeoff between sampling and budgeting samples affects tracking accuracy and efficiency much; second, how to effectively fuse different types of features to learn a robust target representation plays a key role in tracking accuracy. In this paper, we propose a novel SVM based tracking method that handles the first factor with the help of the circulant structures of the samples and the second one by a multi-kernel learning mechanism. Specifically, we formulate an SVM classification model for visual tracking that incorporates two types of kernels whose matrices are circulant, fully taking advantage of the complementary traits of the color and HOG features to learn a robust target representation. Moreover, it is fortunate that the SVM model has a closed-form solution in terms of both the classifier weights and the kernel weights, and both can be efficiently computed via fast Fourier transforms (FFTs). Extensive evaluations on OTB100 and VOT2016 visual tracking benchmarks demonstrate that the proposed method achieves a favorable performance against various state-of-the-art trackers with a speed of 50 fps on a single CPU.

Keywords

visual tracking / SVM / correlation filter / multikernel learning

Cite this article

Download citation ▾
Zhenyang SU, Jing LI, Jun CHANG, Bo DU, Yafu XIAO. Real-time visual tracking using complementary kernel support correlation filters. Front. Comput. Sci., 2020, 14(2): 417-429 DOI:10.1007/s11704-018-8116-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel A V D. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 1–48

[2]

Song Y, Ma C, Wu X, Gong L, Bao L, Zuo W, Shen C, Lau R, Yang M H. VITAL: visual tracking via adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 8990–8999

[3]

Zhang K, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision. 2012, 864–877

[4]

Jia X, Lu H, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829

[5]

Zhang K, Zhang L, Yang M H. Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002–2015

[6]

Zhong W, Lu H, Yang M H. Robust object tracking via sparsity-based collaborative model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845

[7]

Chen W, Zhang K, Liu Q. Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble. Neurocomputing, 2016, 214: 607–617

[8]

Yang J, Zhang K, Liu Q. Robust object tracking by online fisher discrimination boosting feature selection. Computer Vision and Image Understanding, 2016, 153: 100–108

[9]

Song H, Zheng Y, Zhang K. Robust visual tracking via self-similarity learning. Electronics Letters, 2016, 53(1): 20–22

[10]

Song H, Wang G, Zhang K. Hyperspectral image denoising via lowrank matrix recovery. Remote Sensing Letters, 2014, 5(10): 872–881

[11]

Zhang K, Liu Q, Song H, Li X. A variational approach to simultaneous image segmentation and bias correction. IEEE Transactions on Cybernetics, 2015, 45(8): 1426–1437

[12]

Zhang K, Zhang L, Lam K M, Zhang D. A level set approach to image segmentation with intensity inhomogeneity. IEEE Transactions on Cybernetics, 2016, 46(2): 546–557

[13]

Song H. Robust visual tracking via online informative feature selection. Electronics Letters, 2014, 50(25): 1931–1933

[14]

Zhang K, Song H. Real-time visual tracking via online weighted multiple instance learning. Pattern Recognition, 2013, 46(1): 397–411

[15]

Zhang K, Liu Q, Wu Y, Yang M H. Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing, 2016, 25(4): 1779–1792

[16]

Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2411–2418

[17]

Wang N, Shi J, Yeung D Y, Jia J. Understanding and diagnosing visual tracking systems. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 3101–3109

[18]

Avidan S. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064–1072

[19]

Bai Y, Tang M. Robust tracking via weakly supervised ranking SVM. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1854–1861

[20]

Hare S, Golodetz S, Saffari A, Vineet V, Cheng M M, Hicks S L, Torr P H. Struck: structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109

[21]

Zhang J, Ma S, Sclaroff S. MEEM: robust tracking via multiple experts using entropy minimization. In: Proceedings of European Conference on Computer Vision. 2014, 188–203

[22]

Song H, Huang B, Liu Q, Zhang K. Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learningbased super-resolution. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1195–1204

[23]

Ning J, Yang J, Jiang S, Zhang L, Yang M H. Object tracking via dual linear structured SVM and explicit feature map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4266–4274

[24]

Song H. Active contours driven by regularised gradient flux flows for image segmentation. Electronics Letters, 2014, 50(14): 992–994

[25]

Zuo W M, Wu X H, Lin L, Zhang L, Yang M H. Learning support correlation filters for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(5): 1158–1172

[26]

Song H, Liu Q, Wang G, Hang R, Huang B. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 821–829

[27]

Song H, Zheng Y, Zhang K. Efficient algorithm for piecewise-smooth model with approximately explicit solutions. Electronics Letters, 2017, 53(4): 233–235

[28]

Wang M, Liu Y, Huang Z. Large margin object tracking with circulant feature maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 4021–4029

[29]

Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596

[30]

Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr P H. Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1401–1409

[31]

Zhang K, Zhang L, Liu Q, Zhang D, Yang M H. Fast visual tracking via dense spatio-temporal context learning. In: Proceedings of European Conference on Computer Vision. 2014, 127–141

[32]

Song H, Wang G, Cao A, Liu Q, Huang B. Improving the spatial resolution of FY-3 microwave radiation imager via fusion with FY-3/MERSI. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3055–3063

[33]

Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2544–2550

[34]

Zhang K, Liu Q, Yang J, Yang M H. Visual tracking via boolean map representations. Pattern Recognition, 2018, 81: 147–160

[35]

Zhang K, Li X, Song H, Liu Q, Lian W. Visual tracking using spatiotemporally nonlocally regularized correlation filter. Pattern Recognition, 2018, 83: 185–195

[36]

Tang M, Feng J. Multi-kernel correlation filter for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 3038–3046

[37]

Song H, Wang G, Zhang K. Multiple change detection for multispectral remote sensing images via joint sparse representation. Optical Engineering, 2014, 53(12): 123103

[38]

Qi Y, Qin L, Zhang J, Zhang S, Huang Q, Yang M H. Structure-aware local sparse coding for visual tracking. IEEE Transactions on Image Processing, 2018, 27(8): 3857–3869

[39]

Sun C, Wang D, Lu H, Yang M H. Learning spatial-aware regressions for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 8962–8970

[40]

Qi Y, Zhang S, Qin L, Huang Q, Yao H, Lim J, Yang M H. Hedging deep features for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(5): 1116–1130

[41]

Sun C, Wang D, Lu H, Yang M H. Correlation tracking via joint discrimination and reliability learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 489–497

[42]

Zhang T, Liu S, Xu C, Liu B, Yang M H. Correlation particle filter for visual tracking. IEEE Transactions on Image Processing, 2018, 27(6): 2676–2687

[43]

Zhang T, Xu C, Yang M H. Learning multi-task correlation particle filters for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(2): 365–378

[44]

Ma C, Huang J B, Yang X, Yang M H. Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 3074–3082

[45]

Varma M, Ray D. Learning the discriminative power-invariance tradeoff. In: Proceedings of International Conference on Computer Vision. 2007, 1–8

[46]

Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848

[47]

Tang F, Brennan S, Zhao Q, Tao H. Co-tracking using semi-supervised support vector machines. In: Proceedings of International Conference on Computer Vision. 2007, 1–8

[48]

Li X, Dick A, Wang H, Shen C, Van Den Hengel A. Graph mode-based contextual kernels for robust SVM tracking. In: Proceedings of International Conference on Computer Vision. 2011, 1156–1163

[49]

Supancic J S, Ramanan D. Self-paced learning for long-term tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2379–2386

[50]

Danelljan M, Shahbaz Khan F, Felsberg M, Van De Weijer J. Adaptive color attributes for real-time visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1090–1097

[51]

Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration. In: Proceedings of European Conference on Computer Vision. 2014, 254–265

[52]

Ma C, Yang X, Zhang C, Yang M H. Long-term correlation tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 5388–5396

[53]

Hong Z, Chen Z, Wang C, Mei X, Prokhorov D, Tao D. Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 749–758

[54]

Choi J, Jin Chang H, Jeong J, Demiris Y, Young Choi J. Visual tracking using attention-modulated disintegration and integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4321–4330

[55]

Danelljan M, Hager G, Shahbaz Khan F, Felsberg M. Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 4310–4318

[56]

Qi Y, Zhang S, Qin L, Yao H, Huang Q, Lim J, Yang M H. Hedged deep tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4303–4311

[57]

Liu S, Zhang T, Cao X, Xu C. Structural correlation filter for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4312–4320

[58]

Zhang T, Xu C, Yang M H. Multi-task correlation particle filter for robust object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 4335–4343

[59]

Kiani Galoogahi H, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1135–1143

[60]

Mueller M, Smith N, Ghanem B. Context-aware correlation filter tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1396–1404

[61]

Lukezic A, Vojír T, Zajc L C, Matas J, Kristan M. Discriminative correlation filter with channel and spatial reliability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 6309–6318

[62]

Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Massachusetts: MIT Press, 2001

[63]

Lanckriet G R, De Bie T, Cristianini N, Jordan M I, Noble W S. A statistical framework for genomic data fusion. Bioinformatics, 2004, 20(16): 2626–2635

[64]

Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Čehovin L, Vojír T, Häger G, Lukežiˇc A, Fernández G, others. The visual object tracking VOT2016 challenge results. In: Proceedings of European Conference on Computer Vision Workshops. 2016, 777–823

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1604KB)

Supplementary files

Article highlights

943

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/