Real-time manifold regularized context-aware correlation tracking

Jiaqing FAN, Huihui SONG, Kaihua ZHANG, Qingshan LIU, Fei YAN, Wei LIAN

PDF(2323 KB)
PDF(2323 KB)
Front. Comput. Sci. ›› 2020, Vol. 14 ›› Issue (2) : 334-348. DOI: 10.1007/s11704-018-8104-y
RESEARCH ARTICLE

Real-time manifold regularized context-aware correlation tracking

Author information +
History +

Abstract

Despite the demonstrated success of numerous correlation filter (CF) based tracking approaches, their assumption of circulant structure of samples introduces significant redundancy to learn an effective classifier. In this paper, we develop a fast manifold regularized context-aware correlation tracking algorithm that mines the local manifold structure information of different types of samples. First, different from the traditional CF based tracking that only uses one base sample, we employ a set of contextual samples near to the base sample, and impose a manifold structure assumption on them. Afterwards, to take into account the manifold structure among these samples, we introduce a linear graph Laplacian regularized term into the objective of CF learning. Fortunately, the optimization can be efficiently solved in a closed form with fast Fourier transforms (FFTs), which contributes to a highly efficient implementation. Extensive evaluations on the OTB100 and VOT2016 datasets demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms in terms of accuracy and robustness. Especially, our tracker is able to run in real-time with 28 fps on a single CPU.

Keywords

visual tracking / manifold regularization / correlation filter / graph Laplacian

Cite this article

Download citation ▾
Jiaqing FAN, Huihui SONG, Kaihua ZHANG, Qingshan LIU, Fei YAN, Wei LIAN. Real-time manifold regularized context-aware correlation tracking. Front. Comput. Sci., 2020, 14(2): 334‒348 https://doi.org/10.1007/s11704-018-8104-y

References

[1]
Li X, Hu W M, Shen C H, Zhang Z F, Dick A, Hengel A V D. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 1–13
CrossRef Google scholar
[2]
Wang H J, Ge H J. Visual tracking using discriminative representation with l2 regularization. Frontiers of Computer Science, 2018, 12(1): 1–13
CrossRef Google scholar
[3]
Ali A, Jalil A, Niu J W, Zhao X K, Rathore S, Ahmed J, Iftikhar M A. Visual object tracking−classical and contemporary approaches. Frontiers of Computer Science, 2016, 10(1): 167–188
CrossRef Google scholar
[4]
Zhang K H, Liu Q S, Ynag J, Yang M H. Visual tracking via boolean map representations. Pattern Recognition, 2018, 81: 147–160
CrossRef Google scholar
[5]
Zhang K H, Li X J, Song H H, Liu Q S, Lian W. Visual tracking using spatio-temporally nonlocally regularized correlation filter. Pattern Recognition, 2018, 83: 185–195
CrossRef Google scholar
[6]
Bolme D S, Beveridge J R, Draper B A, Lui Y M. Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2544–2550
CrossRef Google scholar
[7]
Henriques J F, Caseiro R, Martins P, Batista J. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596
CrossRef Google scholar
[8]
Zhang K H, Zhang L, Liu Q S, Zhang D, Yang M H. Fast visual tracking via dense spatio-temporal context learning. In: Proceedings of European Conference on Computer Vision. 2014, 127–141
CrossRef Google scholar
[9]
Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr P H S. Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1401–1409
CrossRef Google scholar
[10]
Zhang K H, Liu Q S, Wu Y, Yang M H. Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing, 2016, 25(4): 1779–1792
[11]
Ma C, Xu Y, Ni B B, Yang X K. When correlation filters meet convolutional neural networks for visual tracking. IEEE Signal Processing Letters, 2016, 23(10): 1454–1458
CrossRef Google scholar
[12]
Danelljan M, Häger G, Khan F, Felsberg M. Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference. 2014
CrossRef Google scholar
[13]
Kristan M, Leonardis A, Matas J. The visual object tracking VOT2017 challenge results. In: Proceedings of the IEEE International Conference on Computer Vision Workshop. 2017, 1949–1972
[14]
Mueller M, Smith N, Ghanem B. Context-aware correlation filter tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1396–1404
CrossRef Google scholar
[15]
Galoogahi K H, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, 1135–1143
CrossRef Google scholar
[16]
Yan Y, Nie F, Li W, Gao C Q, Yang Y, Xu D. Image classification by cross-media active learning with privileged information. IEEE Transactions on Multimedia, 2016, 18(12): 2494–2502
CrossRef Google scholar
[17]
Yang Y, Ma Z G, Nie F P, Chang X J, Hauptmann A G. Multi-class active learning by uncertainty sampling with diversity maximization. International Journal of Computer Vision, 2015, 113(2): 113–127
CrossRef Google scholar
[18]
Yang Y, Nie F P, Xu D, Luo J B, Zhuang Y T, Pan Y H. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 723–742
CrossRef Google scholar
[19]
Wu Y, Lim J W, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848
CrossRef Google scholar
[20]
Danelljan M, Shahbaz K F, Felsberg M, Joost V W. Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1090–1097
CrossRef Google scholar
[21]
Ma C, Huang J B, Yang X K, Yang M H. Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 3074–3082
CrossRef Google scholar
[22]
Danelljan M, Hager G, Khan F S, Felsberg M. Convolutional features for correlation filter based visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. 2015, 58–66
CrossRef Google scholar
[23]
Danelljan M, Robinson A, Khan F S, Felsberg M. Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Proceedings of European Conference on Computer Vision. 2016, 472–488
CrossRef Google scholar
[24]
Danelljan M, Bhat G, Khan F S, Felsberg M. ECO: rfficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 21–26
CrossRef Google scholar
[25]
Liu S, Zhang T Z, Cao X C, Xu C S. Structural correlation filter for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4312–4320
CrossRef Google scholar
[26]
Lukezic A, Vojír T, Zajc L C, Matas J, Kristan M. Discriminative correlation filter with channel and spatial reliability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 6309–6318
CrossRef Google scholar
[27]
Danelljan M, Hager G, Shahbaz K F, Felsberg M. Learning spatially regularized correlation filters for visual tracking. In: Proceedings of European Conference on Computer Vision. 2015, 4310–4318
CrossRef Google scholar
[28]
Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006, 7(Nov): 2399–2434
[29]
Chang X J, Yang Y. Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2294–2305
CrossRef Google scholar
[30]
Yu S, Yang Y, Hauptmann A. Harry potter’s marauder’s map: localizing and tracking multiple persons-of-interest by nonnegative discretization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 3714–3720
CrossRef Google scholar
[31]
Bai Y C, Tang M. Robust tracking via weakly supervised ranking SVM. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1854–1861
[32]
Hu H W, Ma B, Shen J B, Shao L. Manifold regularized correlation object tracking. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1786–1795
CrossRef Google scholar
[33]
Zhuang B, Lu H C, Xiao Z Y, Wang D. Visual tracking via discriminative sparse similarity map. IEEE Transactions on Image Processing, 2014, 23(4): 1872–1881
CrossRef Google scholar
[34]
Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Processing Systems, 2001, 585–591
[35]
Ma C, Yang X K, Zhang C Y, Yang M H. Long-term correlation tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 5388–5396
CrossRef Google scholar
[36]
Zhang J M, Ma S G, Sclaroff S. MEEM: robust tracking via multiple experts using entropy minimization. In: Proceedings of European Conference on Computer Vision. 2014, 188–203
CrossRef Google scholar
[37]
Hare S, Golodetz S, Saffari A, Vineet V, Cheng M M, Hicks S L, Torr P H S. Struck: structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109
CrossRef Google scholar
[38]
Wu Y, Lim J W, Yang M H. Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2411–2418
CrossRef Google scholar
[39]
Song Y B, Ma C, Gong L J, Zhang J W, Lau R W H, Yang M H. Crest: convolutional residual learning for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, 2574–2583
CrossRef Google scholar
[40]
Zhu G, Porikli F, Li H D. Beyond local search: tracking objects everywhere with instance-specific proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 943–951
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2323 KB)

Accesses

Citations

Detail

Sections
Recommended

/