A survey on fast simulation of elastic objects

Jin HUANG , Jiong CHEN , Weiwei XU , Hujun BAO

Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (3) : 443 -459.

PDF (872KB)
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (3) : 443 -459. DOI: 10.1007/s11704-018-8081-1
REVIEW ARTICLE

A survey on fast simulation of elastic objects

Author information +
History +
PDF (872KB)

Abstract

Elastic simulation plays an important role in computer graphics and has been widely applied to film and game industries. It also has a tight relationship to virtual reality and computational fabrication applications. The balance between accuracy and performance are the most important challenge in the design of an elastic simulation algorithm. This survey will begin with the basic knowledge of elastic simulation, and then investigate two major acceleration techniques for it. From the viewpoint of deformation energy, we introduce typical linearization and reduction ideas for accelerating. We also introduce some recent progress in projective and position-based dynamics, which mainly rely on special numerical methods. Besides, optimal control for elastic objects and typical collision resolving techniques are discussed. Finally, we discuss several possible future works on integrating elastic simulation into virtual reality and 3D printing applications.

Keywords

computer graphics / elastic simulation / reduction / linearization

Cite this article

Download citation ▾
Jin HUANG, Jiong CHEN, Weiwei XU, Hujun BAO. A survey on fast simulation of elastic objects. Front. Comput. Sci., 2019, 13(3): 443-459 DOI:10.1007/s11704-018-8081-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brenner S, Scott R. TheMathematical Theory of Finite Element Methods. Springer Science & Business Media, 2007

[2]

Hauth M, Etzmuss O, Strasser W. Analysis of numerical methods for the simulation of deformable models. The Visual Computer, 2003, 19(7): 581–600

[3]

Baraff D, Witkin A. Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniqtdes. 1998, 43–54

[4]

Sifakis E, Barbic J. FEM simulation of 3D deformable solids: a practitioner’s guide to theory, discretization and model reduction. In: Proceedings of ACM SIGGRAPH 2012 Courses. 2012, 20

[5]

Müller M, Gross M. Interactive virtual materials. In: Proceedings of the Conference on Graphics Interface. 2004, 239–246

[6]

Terzopoulos D, Witkin A. Physically based models with rigid and deformable components. IEEE Computer Graphics and Applications, 1988, 8(6): 41–51

[7]

Metaxas D, Terzopoulos D. Dynamic deformation of solid primitives with constraints. ACM SIGGRAPH Computer Graphics, 1992, 26(2): 309–312

[8]

Hauser K K, Shen C, O’Brien J F. Interactive deformation using modal analysis with constraints. In: Proceedings of the Conference on Graphics Interface. 2003, 16–17

[9]

Kaufman D M, Sueda S, James D L, Pai D K. Staggered projections for frictional contact in multibody systems. ACM Transactions on Graphics, 2008, 27(5): 164

[10]

Kim T, James D L. Physics-based character skinning using multidomain subspace deformations. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1228–1240

[11]

Capell S, Green S, Curless B, Duchamp T, Popović Z. Interactive skeleton-driven dynamic deformations. ACM Transactions on Graphics, 2002, 21(3): 586–593

[12]

Huang J, Liu X, Bao H, Guo B, Shum H Y. An efficient large deformation method using domain decomposition. Computers & Graphics, 2006, 30(6): 927–935

[13]

Barbič J, Zhao Y. Real-time large-deformation substructuring. ACM Transactions on Graphics, 2011, 30(4): 91

[14]

Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B. Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2002, 49–54

[15]

Etzmuß O, Keckeisen M, Straßer W. A fast finite element solution for cloth modelling. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. 2003, 244–251

[16]

Chao I, Pinkall U, Sanan P, Schröder P. A simple geometric model for elastic deformations. ACM Transactions on Graphics, 2010, 29(4): 38

[17]

McAdams A, Zhu Y, Selle A, Empey M, Tamstorf R, Teran J, Sifakis E. Efficient elasticity for character skinning with contact and collisions. ACM Transactions on Graphics, 2011, 30(4): 37

[18]

Martin S, Kaufmann P, Botsch M, Wicke M, Gross M. Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum, 2008, 27(5): 1521–1529

[19]

Fu Z F, He J. Modal Analysis. Oxford: Butterworth-Heinemann, 2001

[20]

Barbič J, James D. Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2007, 171–180

[21]

Pentland A, Williams J. Good vibrations: modal dynamics for graphics and animation. ACMSIGGRAPH Computer Graphics, 1989, 23(3): 207–214

[22]

Silva M, Maia N M. Modal Analysis and Testing. Springer-Verlag, 1989

[23]

Barbič J, James D L. Real-time subspace integration for St. Venant- Kirchhoff deformable models. ACM Transactions on Graphics, 2005, 24(3): 982–990

[24]

Von Tycowicz C, Schulz C, Seidel H P, Hildebrandt K. An efficient construction of reduced deformable objects. ACM Transactions on Graphics, 2013, 32(6): 213

[25]

Yang Y, Li D, Xu W, Tian Y, Zheng C. Expediting precomputation for reduced deformable simulation. ACM Transactions on Graphics, 2015, 34(6): 243

[26]

Langlois T R, An S S, Jin K K, James D L. Eigenmode compression for modal sound models. ACM Transactions on Graphics, 2014, 33(4): 40

[27]

Zheng C, James D L. Toward high-quality modal contact sound. ACM Transactions on Graphics, 2011, 30(4): 38

[28]

Kry P G, James D L, Pai D K. Eigenskin: real time large deformation character skinning in hardware. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2002, 153–159

[29]

Kim T, James D L. Skipping steps in deformable simulation with online model reduction. ACM Transactions on Graphics, 2009, 28(5): 123

[30]

Martin S, Thomaszewski B, Grinspun E, Gross M. Example-based elastic materials. ACM Transactions on Graphics, 2011, 30(4):72

[31]

Zhang W, Zheng J, Thalmann N M. Real-time subspace integration for example-based elastic material. Computer Graphics Forum, 2015, 34(2): 395–404

[32]

Xu H, Li Y, Chen Y, Barbič J. Interactive material design using model reduction. ACM Transactions on Graphics, 2015, 34(2): 18

[33]

Chen X, Zheng C, Zhou K. Example-based subspace stress analysis for interactive shape design. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(10): 2314–2327

[34]

Hahn F, Martin S, Thomaszewski B, Sumner R, Coros S, Gross M. Rig-space physics. ACM Transactions on Graphics, 2012, 31(4): 72

[35]

Hahn F, Thomaszewski B, Coros S, Sumner R W, Gross M. Efficient simulation of secondary motion in rig-space. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2013, 165–171

[36]

Bailey S W, Otte D, Dilorenzo P, O’Brien J F. Fast and deep deformation approximations. ACM Transactions on Graphics, 2018, 37(4): 119

[37]

Gilles B, Bousquet G, Faure F, Pai D K. Frame-based elastic models. ACM Transactions on Graphics, 2011, 30(2): 15

[38]

Joshi P, Meyer M, DeRose T, Green B, Sanocki T. Harmonic coordinates for character articulation. ACM Transactions on Graphics, 2007, 26(3): 71

[39]

Teng Y, Meyer M, DeRose T, Kim T. Subspace condensation: full space adaptivity for subspace deformations. ACM Transactions on Graphics, 2015, 34(4): 76

[40]

Yang Y, Xu W, Guo X, Zhou K, Guo B. Boundary-aware multidomain subspace deformation. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1633–1645

[41]

Lu W, Jin N, Fedkiw R. Two-way coupling of fluids to reduced deformable bodies. In: Proceedings of the ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2016, 67–76

[42]

Yang C, Li S, Lan Y, Wang L, Hao A, Qin H. Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided Geometric Design, 2016, 43: 53–67

[43]

Harmon D, Zorin D. Subspace integration with local deformations. ACM Transactions on Graphics, 2013, 32(4): 107

[44]

Wang Y, Jacobson A, Barbič J, Kavan L. Linear subspace design for real-time shape deformation. ACM Transactions on Graphics, 2015, 34(4): 57

[45]

Yang C, Li S, Lan Y, Wang L, Hao A, Qin H. Coupling time-varying modal analysis and fem for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided Geometric Design, 2016, 43: 53–67

[46]

An S S, Kim T, James D L. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics, 2008, 27(5): 165

[47]

Choi M G, Ko H S. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics, 2005, 11(1): 91–101

[48]

Huang J, Tong Y, Zhou K, Bao H, Desbrun M. Interactive shape interpolation through controllable dynamic deformation. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(7): 983–992

[49]

Li S, Huang J, Goes de F, Jin X, Bao H, Desbrun M. Space-time editing of elastic motion through material optimization and reduction. ACMTransactions on Graphics, 2014, 33(4): 108

[50]

Pan Z, Bao H, Huang J. Subspace dynamic simulation using rotationstrain coordinates. ACM Transactions on Graphics, 2015, 34(6): 242

[51]

Müller M, Heidelberger B, Teschner M, Gross M. Meshless deformations based on shape matching. ACM Transactions on Graphics, 2005, 24(3): 471–478

[52]

Müller M, Bruno H, Marcus H, John R. Position based dynamics. Journal of Visual Communication and Image Representation, 2007, 18(2): 109–118

[53]

Rivers A R, James D L. Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Transactions on Graphics, 2007, 26(3): 82

[54]

Müller M, Chentanez N. Solid simulation with oriented particles. ACM Transactions on Graphics, 2011, 30(4): 92

[55]

Bender J, Müller M, Otaduy M A, Teschner M. Position-based methods for the simulation of solid objects in computer graphics. In: Proceedings of Eurographics 2013-State of the Art Reports. 2013, 1–22

[56]

Fratarcangeli M, Tibaldo V, Pellacini F. Vivace: a practical gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics, 2016, 35(6): 214

[57]

Deul C, Kugelstadt T, Weiler M, Bender J. Direct position-based solver for stiff rods. In: Proceedings of Computer Graphics Forum. 2018

[58]

Huang J, Shi X, Liu X, Zhou K, Guo B, Bao H. Geometrically based potential energy for simulating deformable objects. The Visual Computer, 2006, 22(9): 740–748

[59]

Huang J, Zhang H, Shi X, Liu X, Bao H. Interactive mesh deformation with pseudo material effects. Computer Animation and Virtual Worlds, 2006, 17(3-4): 383–392

[60]

Liu T, Bargteil A W, OBrien J F, Kavan L. Fast simulation of massspring systems. ACM Transactions on Graphics, 2013, 32(6): 214

[61]

Bouaziz S, Martin S, Liu T, Kavan L, Pauly M. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics, 2014, 33(4): 154

[62]

Brant C, Eisemann E, Hilbebrant K. Hyper-reduced projective dynamics. ACM Transactions on Graphics, 2018, 37(4): 154

[63]

Narain R, Overby M, Brown G E. Admm ⊇ projective dynamics: fast simulation of general constitutive models. In: Proceedings of the ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 2016, 21–28

[64]

Wang H. A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Transactions on Graphics, 2015, 34(6): 246

[65]

Liu T, Bouaziz S, Kavan L. Quasi-newton methods for real-time simulation of hyperelastic materials. ACM Transactions on Graphics, 2017, 36(3): 23

[66]

Wang H, Yang Y. Descent methods for elastic body simulation on the GPU. ACM Transactions on Graphics, 2016, 35(6): 212

[67]

Peng Y, Deng B, Zhang J, Geng F, Qin W, Liu L. Anderson acceleration for geometry optimization and physics simulation. 2018, arXiv preprint arXiv: 1805.05715

[68]

Witkin A, Kass M. Spacetime constraints. ACM Siggraph Computer Graphics, 1988, 22(4): 159–168

[69]

Barbič J, Silva da M, Popovíc J. Deformable object animation using reduced optimal control. ACM Transactions on Graphics, 2009, 28(3): 53

[70]

Hildebrandt K, Schulz C, Tycowicz von C, Polthier K. Interactive spacetime control of deformable objects. ACM Transactions on Graphics, 2012, 31(4): 71

[71]

Kass M, Anderson J. Animating oscillatory motion with overlap: wiggly splines. ACM Transactions on Graphics, 2008, 27(3): 28

[72]

Barbič J, Sin F, Grinspun E. Interactive editing of deformable simulations. ACM Transactions on Graphics, 2012, 31(4): 70

[73]

Li S, Huang J, Desbrun M, Jin X. Interactive elastic motion editing through space–time position constraints. Computer Animation and Virtual Worlds, 2013, 24(3-4): 409–417

[74]

Barbič J, Popovíc J. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics, 2008, 27(5): 163

[75]

Schulz C, Tycowicz von C, Seidel H P, Hildebrandt K. Animating deformable objects using sparse spacetime constraints. ACM Transactions on Graphics, 2014, 33(4): 109

[76]

Teschner M, Kimmerle S, Heidelberger B, Zachmann G, Raghupathi L, Fuhrmann A, Cani M P, Faure F, Magnenat-Thalmann N, Strasser W, Volino P. Collision detection for deformable objects. Computer Graphics Forum, 2005, 24(1): 61–81

[77]

Redon S, Kheddar A, Coquillart S. Fast continuous collision detection between rigid bodies. Computer Graphics Forum, 2002, 21(3): 279–287

[78]

Zhang X, Redon S, Lee M, Kim Y J. Continuous collision detection for articulated models using taylor models and temporal culling. ACM Transactions on Graphics, 2007, 26(3): 15

[79]

Provot X. Collision and Self-collision Handling in Cloth Model Dedicated to Design Garments. Computer Animation and Simulation, Springer, Vienna, 1997, 177–189

[80]

Bridson R, Fedkiw R, Anderson J. Robust treatment of collisions, contact and friction for cloth animation. ACM Transactions on Graphics (ToG), 2002, 21(3): 594–603

[81]

Harmon D, Vouga E, Tamstorf R, Grinspun E. Robust treatment of simultaneous collisions. ACM Transactions on Graphics, 2008, 27(3): 23

[82]

Brochu T, Edwards E, Bridson R. Efficient geometrically exact continuous collision detection. ACM Transactions on Graphics, 2012, 31(4): 96

[83]

Tang M, Manocha D, Yoon S E, Du P, Heo J P, Tong R F. Volccd: fast continuous collision culling between deforming volume meshes. ACM Transactions on Graphics, 2011, 30(5): 111

[84]

Tang M, Tong R, Wang Z, Manocha D. Fast and exact continuous collision detection with bernstein sign classification. ACM Transactions on Graphics, 2014, 33(6): 186

[85]

Wang H. Defending continuous collision detection against errors. ACM Transactions on Graphics, 2014, 33(4): 122

[86]

Wang Z, Tang M, Tong R, Manocha D. Tightccd: efficient and robust continuous collision detection using tight error bounds. Computer Graphics Forum, 2015, 34(7): 289–298

[87]

Choi K J, Ko H S. Stable but responsive cloth. In: Proceedings of ACM SIGGRAPH 2005 Courses. 2005

[88]

Fisher S, Lin M C. Deformed Distance Fields for Simulation of Non-penetrating Flexible Bodies. Computer Animation and Simulation 2001, Springer, Vienna, 2001, 99–111

[89]

Keiser M, Heidelberger B, Gross M. Consistent Penetration Depth Estimation for Deformable Collision Response. Vision, Modeling, and Visualization, IOS Press, 2004, 339–346

[90]

Harmon D, Vouga E, Smith B, Tamstorf R, Grinspun E. Asynchronous contact mechanics. ACM Transactions on Graphics, 2009, 28(3): 87

[91]

Tang M, Manocha D, Otaduy M A, Tong R. Continuous penalty forces. ACM Transactions on Graphics, 2012, 31(4): 107

[92]

Otaduy M A, Tamstorf R, Steinemann D, Gross M. Implicit contact handling for deformable objects. Computer Graphics Forum, 2009, 28(2): 559–568

[93]

Li S, Pan Z, Huang J, Bao H, Jin X. Deformable objects collision handling with fast convergence. Computer Graphics Forum, 2015, 34(7): 269–278

[94]

Barbič J, James D L. Subspace self-collision culling. ACM Transactions on Graphics, 2010, 29(4): 81

[95]

Schvartzman S C, Gascón J, Otaduy M A. Bounded normal trees for reduced deformations of triangulated surfaces. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2009, 75–82

[96]

Teng Y, Otaduy M A, Kim T. Simulating articulated subspace selfcontact. ACM Transactions on Graphics, 2014, 33(4): 106

[97]

Harmon D, Zorin D. Subspace integration with local deformations. ACM Transactions on Graphics, 2013, 32(4): 107

[98]

Barbič J, James D L. Six-DoF haptic rendering of contact between geometrically complex reduced deformable models. IEEE Transactions on Haptics, 2008, 1(1): 39–52

[99]

Lipeng Y, Shuai L, Aimin H, Hong Q. Realtime two-way coupling of meshless fluids and nonlinear fem. Computer Graphics Forum, 2012, 31(7): 2037–2046

[100]

Chen X, Zheng C, Xu W, Zhou K. An asymptotic numerical method for inverse elastic shape design. ACM Transactions on Graphics, 2014, 33(4): 95

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (872KB)

Supplementary files

Article highlights

1325

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/