Learning deep representations for semantic image parsing: a comprehensive overview

Lili HUANG , Jiefeng PENG , Ruimao ZHANG , Guanbin LI , Liang LIN

Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (5) : 840 -857.

PDF (1089KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (5) : 840 -857. DOI: 10.1007/s11704-018-7195-8
RESEARCH ARTICLE

Learning deep representations for semantic image parsing: a comprehensive overview

Author information +
History +
PDF (1089KB)

Abstract

Semantic image parsing, which refers to the process of decomposing images into semantic regions and constructing the structure representation of the input, has recently aroused widespread interest in the field of computer vision. The recent application of deep representation learning has driven this field into a new stage of development. In this paper, we summarize three aspects of the progress of research on semantic image parsing, i.e., category-level semantic segmentation, instance-level semantic segmentation, and beyond segmentation. Specifically, we first review the general frameworks for each task and introduce the relevant variants. The advantages and limitations of each method are also discussed. Moreover, we present a comprehensive comparison of different benchmark datasets and evaluation metrics. Finally, we explore the future trends and challenges of semantic image parsing.

Keywords

semantic image segmentation / deep learning / convolutional neural networks / image parsing

Cite this article

Download citation ▾
Lili HUANG, Jiefeng PENG, Ruimao ZHANG, Guanbin LI, Liang LIN. Learning deep representations for semantic image parsing: a comprehensive overview. Front. Comput. Sci., 2018, 12(5): 840-857 DOI:10.1007/s11704-018-7195-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao H S, Shi J P, Qi X J, Wang X G, Jia J Y. Pyramid scene parsing network. In: Proceedings of International Conference on Computer Vision and Pattern Recognition. 2017, 2881–2890

[2]

He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of IEEE International Conference on Computation Vision. 2017, 2980–2988

[3]

Tu Z, Chen X, Yuille A L, Zhu S C. Image parsing: unifying segmentation, detection, and recognition. International Journal of Computer Vision, 2005, 63(2): 113–140

[4]

Tu Z, Zhu S C. Parsing images into region and curve processes. In: Proceedings of European Conference on Computer Vision. 2002, 393–407

[5]

Han F, Zhu S C. Bottom-up/top-down image parsing with attribute grammar. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 59–73

[6]

Lin L, Wang G, Zhang R, Zhang R, Liang X, Zuo W. Deep structured scene parsing by learning with image descriptions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 2276–2284

[7]

Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110

[8]

Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 886–893

[9]

Ahonen T, Hadid A, Pietikäinen M. Face recognition with local binary patterns. In: Proceedings of European Conference on Computer Vision. 2004, 469–481

[10]

Liu Z, Li X, Luo P, Loy C C, Tang X. Semantic image segmentation via deep parsing network. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1377–1385

[11]

Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848

[12]

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3431–3440

[13]

Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. 2014, arXiv preprint arXiv:1412.7062

[14]

Peng C, Zhang X, Yu G, Luo G, Sun J. Large kernel matters-improve semantic segmentation by global convolutional network. 2017, arXiv preprint arXiv:1703.02719

[15]

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems. 2012, 1097–1105

[16]

Socher R, Manning C D, Ng A Y. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop. 2010, 1–9

[17]

Li Y, Qi H, Dai J, Ji X, Wei Y. Fully convolutional instance-aware semantic segmentation. 2016, arXiv preprint arXiv:1611.07709

[18]

Bengio Y. Deep learning of representations: looking forward. In: Proceedings of International Conference on Statistical Language and Speech Processing. 2013, 1–37

[19]

Bengio Y. Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning. 2012, 17–36

[20]

Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2013, 35(8): 1798–1828

[21]

LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, Jackel L D. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1(4): 541–551

[22]

Dai J, He K, Li Y, Ren S, Sun J. Instance-sensitive fully convolutional networks. In: Proceedings of European Conference on Computer Vision. 2016, 534–549

[23]

Islam M A, Naha S, Rochan M, Bruce N, Wang Y. Label refinement network for coarse-to-fine semantic segmentation. 2017, arXiv preprint arXiv:1703.00551

[24]

Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning. 2015, arXiv preprint arXiv:1506.00019

[25]

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444

[26]

Liang X, Shen X, Xiang D, Feng J, Lin L, Yan S. Semantic object parsing with local-global long short-term memory. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 3185–3193

[27]

Karpathy A, Li F F. Deep visual-semantic alignments for generating image descriptions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3128–3137

[28]

Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks. In: Proceedings of Advances in Neural Information Processing Systems. 2014, 3104–3112

[29]

Li Z, Gan Y, Liang X, Yu Y, Cheng H, Lin L. LSTM-CF: unifying context modeling and fusion with LSTMS for RGB-D scene labeling. In: Proceedings of European Conference on Computer Vision. 2016, 541–557

[30]

Peng Z, Zhang R, Liang X, Liu X, Lin L. Geometric scene parsing with hierarchical LSTM. 2016, arXiv preprint arXiv:1604.01931

[31]

Byeon W, Breuel T M, Raue F, Liwicki M. Scene labeling with LSTM recurrent neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3547–3555

[32]

Liang X, Shen X, Feng J, Lin L, Yan S. Semantic object parsing with graph LSTM. In: Proceedings of European Conference on Computer Vision. 2016, 125–143

[33]

Liang X, Lin L, Shen X, Feng J, Yan S, Xing E P. Interpretable structure-evolving LSTM. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 2175–2184

[34]

Zhang R, Yang W, Peng Z, Wang X, Lin L. Progressively diffused networks for semantic image segmentation. 2017, arXiv preprint arXiv:1702.05839

[35]

Elman J L. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 1991, 7(2-3): 195–225

[36]

Liu W, Rabinovich A, Berg A C. Parsenet: looking wider to see better. 2015, arXiv preprint arXiv:1506.04579

[37]

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1–9

[38]

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770–778

[39]

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014, arXiv preprint arXiv:1409.1556

[40]

Pinheiro P H O, Collobert R. Recurrent convolutional neural networks for scene labeling. In: Proceedings of International Conference on Machine Learning. 2014, 82–90

[41]

Graves A, Fernández S, Schmidhuber J. Multi-dimensional recurrent neural networks. In: Proceedings of the International Conference on Artificial Neural Networks. 2007, 549–558

[42]

Lin L, Huang L, Chen T, Gan Y, Cheng H. Knowledge-guided recurrent neural network learning for task-oriented action prediction. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2017, 625–630

[43]

Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915–1929

[44]

Gupta S, Girshick R, Arbeláez P, Malik J. Learning rich features from RGB-D images for object detection and segmentation. In: Proceedings of European Conference on Computer Vision. 2014, 345–360

[45]

Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano P E. Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing, 2005, 14(9): 1360–1371

[46]

Liang X, Liu S, Shen X, Yang J, Liu L, Dong J, Lin L, Yan S. Deep human parsing with active template regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(12): 2402–2414

[47]

Liang X, Xu C, Shen X, Yang J, Liu S, Tang J, Lin L, Yan S. Human parsing with contextualized convolutional neural network. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1386–1394

[48]

Krähenbühl P, Koltun V. Efficientcient inference in fully connected CRFS with gaussian edge potentials. In: Proceedings of Advances in Neural Information Processing Systems. 2011, 109–117

[49]

Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1520–1528

[50]

Badrinarayanan V, Handa A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. 2015, arXiv preprint arXiv:1505.07293

[51]

Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015, 234–241

[52]

Lin G, Milan A, Shen C, Reid I. Refinenet: multi-path refinement networks with identity mappings for high-resolution semantic segmentation. 2016, arXiv preprint arXiv:1611.06612

[53]

Chen L C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. 2017, arXiv preprint arXiv:1706.05587

[54]

Yu F, Koltun V.Multi-scale context aggregation by dilated convolutions. 2015, arXiv preprint arXiv:1511.07122

[55]

Li X, Liu Z, Luo P, Loy C C, Tang X. Not all pixels are equal: difficulty-aware semantic segmentation via deep layer cascade. 2017, arXiv preprint arXiv:1704.01344

[56]

Zhou Y, Xie L, Shen W, Wang Y, Fishman E K, Yuille A L. A fixedpoint model for pancreas segmentation in abdominal ct scans. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. 2017, 693–701

[57]

Li Q, Wang J, Wipf D, Tu Z. Fixed-point model for structured labeling. In: Proceedings of International Conference on Machine Learning. 2013, 214–221

[58]

Wang G, Luo P, Lin L, Wang X. Learning object interactions and descriptions for semantic image segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 5859–5867

[59]

Luo P, Wang G, Lin L, Wang X. Deep dual learning for semantic image segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 2718–2726

[60]

Schwing A G, Urtasun R. Fully connected deep structured networks. 2015, arXiv preprint arXiv:1503.02351

[61]

Yang W, Luo P, Lin L. Clothing co-parsing by joint image segmentation and labeling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3182–3189

[62]

Byeon W, Liwicki M, Breuel T M. Texture classification using 2D LSTM networks. In: Proceedings of International Conference on Pattern Recognition. 2014, 1144–1149

[63]

Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 2650–2658

[64]

Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 580–587

[65]

Reza M, Kosecka J. Reinforcement learning for semantic segmentation in indoor scenes. 2016, arXiv preprint arXiv:1606.01178

[66]

Van Oord A, Kalchbrenner N, Kavukcuoglu K. Pixel recurrent neural networks. In: Proceedings of International Conference on Machine Learning. 2016, 1747–1756

[67]

Kalchbrenner N, Danihelka I, Graves A. Grid long short-term memory. 2015, arXiv preprint arXiv:1507.01526

[68]

Hariharan B, Arbeláez P, Girshick R, Malik J. Simultaneous detection and segmentation. In: Proceedings of European Conference on Computer Vision. 2014, 297–312

[69]

Liang X, Wei Y, Shen X, Jie Z, Feng J, Lin L, Yan S. Reversible recursive instance-level object segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 633–641

[70]

Liang X, Wei Y, Shen X, Yang J, Lin L, Yan S. Proposal-free network for instance-level object segmentation. 2015, arXiv preprint arXiv:1509.02636

[71]

Abtahi F, Zhu Z, Burry A M. A deep reinforcement learning approach to character segmentation of license plate images. In: Proceedings of International Conference on Machine Vision Applications. 2015, 539–542

[72]

Lin L, Wang K, Zuo W, Wang M, Luo J, Zhang L. A deep structured model with radius–margin bound for 3D human activity recognition. International Journal of Computer Vision, 2016, 118(2): 256–273

[73]

Hariharan B, Arbeláez P, Girshick R, Malik J. Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 447–456

[74]

Chen Y T, Liu X, Yang M H. Multi-instance object segmentation with occlusion handling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3470–3478

[75]

Arbeláez P, Pont-Tuset J, Barron J T, Marques F, Malik J. Multiscale combinatorial grouping. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 328–335

[76]

Li G, Xie Y, Lin L, Yu Y. Instance-level salient object segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 247–256

[77]

Dai J, He K, Sun J. Instance-aware semantic segmentation via multitask network cascades. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 3150–3158

[78]

Girshick R. Fast R-CNN. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1440–1448

[79]

He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Proceedings of European Conference on Computer Vision. 2014, 346–361

[80]

Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of Advances in Neural Information Processing Systems. 2015, 91–99

[81]

Newell A, Huang Z, Deng J. Associative embedding: end-to-end learning for joint detection and grouping. In: Proceedings of Advances in Neural Information Processing Systems. 2017, 2274–2284

[82]

Harley A W, Derpanis K G, Kokkinos I. Learning dense convolutional embeddings for semantic segmentation. 2015, arXiv preprint arXiv:1511.04377

[83]

Fathi A, Wojna Z, Rathod V, Wang P, Song H O, Guadarrama S, Murphy K P. Semantic instance segmentation via deep metric learning. 2017, arXiv preprint arXiv:1703.10277

[84]

Yang L, Jin R. Distance metric learning: a comprehensive survey. Michigan State Universiy, 2006, 2(2): 1–51

[85]

Xu J, Schwing A G, Urtasun R. Tell me what you see and I will show you where it is. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3190–3197

[86]

Miller G A, Beckwith R, Fellbaum C, Gross D, Miller K J. Introduction to wordnet: an on-line lexical database. International Journal of Lexicography, 1990, 3(4): 235–244

[87]

Socher R, Bauer J, Manning C D, Ng A Y. Parsing with compositional vector grammars. In: Proceedings of Annual Meeting of the Association for Computational Linguistics. 2013, 455–465

[88]

Everingham M, Van Gool L,Williams C K, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303–338

[89]

Chen X, Mottaghi R, Liu X, Fidler S, Urtasun R, Yuille A L. Detect what you can: detecting and representing objects using holistic models and body parts. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1971–1978

[90]

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3): 211–252

[91]

Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. Semantic understanding of scenes through the ADE20K dataset. 2016, arXiv preprint arXiv:1608.05442

[92]

Lin T Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick C L, Dollár P. Microsoft COCO: common objects in context. 2014, arXiv preprint arXiv:1405.0312

[93]

Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. Microsoft COCO: common objects in context. In: Proceedings of European Conference on Computer Vision. 2014, 740–755

[94]

Liu C, Yuen J, Torralba A. Nonparametric scene parsing: label transfer via dense scene alignment. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1972–1979

[95]

Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support inference from RGBD images. In: Proceedings of European Conference on Computer Vision. 2012, 746–760

[96]

Gupta S, Arbelaez P, Malik J. Perceptual organization and recognition of indoor scenes from RGB-D images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 564–571

[97]

Song S, Lichtenberg S P, Xiao J. Sun RGB-D: a RGB-D scene understanding benchmark suite. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 567–576

[98]

Janoch A, Karayev S, Jia Y, Barron J T, Fritz M, Saenko K, Darrell T. A category-level 3D object dataset: putting the kinect to work. Consumer Depth Cameras for Computer Vision. 2013, 141–165

[99]

Xiao J, Owens A, Torralba A. SUN3D: a database of big spaces reconstructed using SFM and object labels. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1625–1632

[100]

Yamaguchi K, Kiapour M H, Ortiz L E, Berg T L. Parsing clothing in fashion photographs. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 3570–3577

[101]

Liu S, Feng J, Domokos C, Xu H, Huang J, Hu Z, Yan S. Fashion parsing with weak color-category labels. IEEE Transactions on Multimedia, 2014, 16(1): 253–265

[102]

Dong J, Chen Q, Xia W, Huang Z, Yan S. A deformable mixture parsing model with parselets. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 3408–3415

[103]

Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2016, 3213–3223

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1089KB)

Supplementary files

Supplementary Material

1104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/