Chromatic framework for quantum movies and applications in creating montages

Fei YAN, Sihao JIAO, Abdullah M. ILIYASU, Zhengang JIANG

PDF(3595 KB)
PDF(3595 KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (4) : 736-748. DOI: 10.1007/s11704-018-7070-8
RESEARCH ARTICLE

Chromatic framework for quantum movies and applications in creating montages

Author information +
History +

Abstract

A framework that introduces chromatic considerations to earlier descriptions of movies on quantum computers is proposed. This chromatic framework for quantum movies (CFQM) integrates chromatic components of individual frames (each a multi-channel quantum image- MCQI state) that make up the movie, while each frame is tagged to a time component of a quantum register (i.e., a movie strip). The formulation of the CFQM framework and properties inherent to the MCQI images facilitate the execution of a cortege of carefully formulated transformations including the frame-to-frame (FTF), color of interest (COI), and subblock swapping (SBS) operations that are not realizable on other quantum movie formats. These innovative transformations are deployed in the creation of digital movie-like montages on the CFQM framework. Future studies could explore additional MCQI-related operations and their use to execute more advanced montage applications.

Keywords

quantum information / quantum computation / quantum image processing / quantum movie / montage

Cite this article

Download citation ▾
Fei YAN, Sihao JIAO, Abdullah M. ILIYASU, Zhengang JIANG. Chromatic framework for quantum movies and applications in creating montages. Front. Comput. Sci., 2018, 12(4): 736‒748 https://doi.org/10.1007/s11704-018-7070-8

References

[1]
Yan F, Iliyasu A M, Venegas-Andraca S E. A survey of quantum image representations. Quantum information Processing, 2016, 15(1): 1–35
CrossRef Google scholar
[2]
Vlasov A Y. Quantum computations and images recognition. 1997, arXiv: quant-ph/9703010
[3]
Iliyasu A M, Yan F, Hirota K. Metric for estimating congruity between quantum images. Entropy, 2016, 18(10): 360
CrossRef Google scholar
[4]
Beach G, Lomont C, Cohen C. Quantum image processing (QuIP). In: Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop. 2003, 39–44
CrossRef Google scholar
[5]
Venegas-Andraca S E, Bose S. Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of SPIE Conference on Quantum Information and Computation. 2003, 134–147
CrossRef Google scholar
[6]
Latorre J I. Image compression and entanglement. 2005, arXiv: quantph/0510031
[7]
Le P Q, Dong F Y, Hirota K. A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Information Processing, 2011, 10(1): 63–84
CrossRef Google scholar
[8]
Iliyasu A M. Towards realising secure and efficient image and video processing applications on quantum computers. Entropy, 2013, 15: 2874–2974
CrossRef Google scholar
[9]
Yan F, Iliyasu A M, Le P Q. Quantum image processing: a review of advances in its security technologies. International Journal of Quantum Information, 2017, 15: 1730001
CrossRef Google scholar
[10]
Iliyasu A M, Le P Q, Dong F Y, Hirota K. A framework for representing and producing movies on quantum computers. International Journal of Quantum Information, 2011, 9(6): 1459–1497
CrossRef Google scholar
[11]
Sun B, Le P Q, Iliyasu A M, Yan F, Garcia J A, Dong F Y, Hirota K. A multi-channel representation for images on quantum computers using the RGBα color space. In: Proceedings of the 7th IEEE International Symposium on Intelligent Signal Processing, 2011, 1–6
[12]
Yan F, Iliyasu A M, Venegas-Andraca S E, Yang H M. Video encryption and decryption on quantum computers. International Journal of Theoretical Physics, 2015, 54(8): 2893–2904
CrossRef Google scholar
[13]
Yan F, Iliyasu A M, Yang H M, Hirota K. Strategy for quantum image stabilization. Science China Information Sciences, 2016, 59: 052102
CrossRef Google scholar
[14]
Yan F, Iliyasu A M, Khan A R, Yang H M. Measurements-based moving target detection in quantum video. International Journal of Theoretical Physics, 2016, 55(4): 2162–2173
CrossRef Google scholar
[15]
Jing G M, Hu Y T, Guo Y W, Yu Y Z, Wang W P. Content-aware video2comics with manga-style layout. IEEE Transactions on Multimedia, 2015, 17(12): 2122–2133
CrossRef Google scholar
[16]
Liao Z C, Yu Y Z, Gong B C, Cheng L C. Audeosynth: music-driven video montage. ACM Transactions on Graphics, 2015, 34(4): 1–10
CrossRef Google scholar
[17]
Yan F, Iliyasu A M, Sun B, Venegas-Andraca S E, Dong F Y, Hirota K. A duple watermarking strategy for multi-channel quantum images. Quantum Information Processing, 2015, 14(5): 1675–1692
CrossRef Google scholar
[18]
Yan F, Guo Y M, Iliyasu A M, Jiang Z G, Yang H M. Multi-channel quantum image scrambling. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, 20(1): 163–170
CrossRef Google scholar
[19]
Sun B, Le P Q, Iliyasu A M, Yan F, Garcia J A, Dong F Y, Al-Asmari A K, Hirota K. Multi-channel information operations on quantum images. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2014, 18(2): 140–149
CrossRef Google scholar
[20]
Nielsen M A, Chuang I L. Quantum computation and quantum information. Cambridge: Cambridge University Press, 2000
[21]
Iliyasu A M, Le P Q, Dong F Y, Hirota K. Watermarking and authentication of quantum images based on restricted geometric transformations. Information Sciences, 2012, 186(1): 126–149
CrossRef Google scholar
[22]
Le P Q, Iliyasu A M, Dong F Y, Hirota K. Strategies for designing geometric transformations on quantum images. Theoretical Computer Science, 2011, 412(15): 1406–1418
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(3595 KB)

Accesses

Citations

Detail

Sections
Recommended

/