Statistical relational learning based automatic data cleaning

Weibang LI, Ling LI, Zhanhuai LI, Mengtian CUI

PDF(218 KB)
PDF(218 KB)
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (1) : 215-217. DOI: 10.1007/s11704-018-7066-4
LETTER

Statistical relational learning based automatic data cleaning

Author information +
History +

Cite this article

Download citation ▾
Weibang LI, Ling LI, Zhanhuai LI, Mengtian CUI. Statistical relational learning based automatic data cleaning. Front. Comput. Sci., 2019, 13(1): 215‒217 https://doi.org/10.1007/s11704-018-7066-4

References

[1]
Carlo B, Monica S. Data Quality: Concepts, Methodologies and Techniques. Berlin: Springer Publishing Company, 2006
[2]
Doshi P, Greenwald L, Clarke J R. Using Bayesian networks for cleansing trauma data. In: Proceedings of the 6th International Florida Artificial Intelligence Research Society Conference. 2003, 72–76
[3]
Yakout M, Elmagarmid A K, Neville J, Ouzzani M, Ilyas I F. Guided data repair. Proceedings of the VLDB Endowment, 2011, 4(5): 279–289
CrossRef Google scholar
[4]
Wang J, Kraska T, Franklin M J, Feng J. Crowder: crowdsourcing entity resolution. Proceedings of the VLDB Endowment, 2012, 5(11): 1483–1494
CrossRef Google scholar
[5]
Fan W, Geerts F, Jia X, Kementsietsidis A. Conditional functional dependencies for capturing data inconsistencies. Journal of ACM Transactions on Database Systems, 2008, 33(2): 1–48
CrossRef Google scholar
[6]
Smyth P, Goodman R M. Rule induction using information theory. In: Proceedings of the International Conference on Knowledge Discovery in Databases. 1991, 159–176
[7]
Hu Y, De S, Chen Y, Kambhampati S. Bayesian data cleaning for Web data. 2012, arXiv preprint arXiv:1204.3677
[8]
De S, Hu Y, Meduri V, Chen Y, Kambhampati S. Bayeswipe: a scalable probabilistic framework for improving data quality. Journal of Data and Information Quality, 2016, 8(1): 1–30
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(218 KB)

Accesses

Citations

Detail

Sections
Recommended

/