Joint salient object detection and existence prediction

Huaizu JIANG , Ming-Ming CHENG , Shi-Jie LI , Ali BORJI , Jingdong WANG

Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (4) : 778 -788.

PDF (565KB)
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (4) : 778 -788. DOI: 10.1007/s11704-017-6613-8
RESEARCH ARTICLE

Joint salient object detection and existence prediction

Author information +
History +
PDF (565KB)

Abstract

Recent advances in supervised salient object detection modeling has resulted in significant performance improvements on benchmark datasets. However, most of the existing salient object detection models assume that at least one salient object exists in the input image. Such an assumption often leads to less appealing saliencymaps on the background images with no salient object at all. Therefore, handling those cases can reduce the false positive rate of a model. In this paper, we propose a supervised learning approach for jointly addressing the salient object detection and existence prediction problems. Given a set of background-only images and images with salient objects, as well as their salient object annotations, we adopt the structural SVM framework and formulate the two problems jointly in a single integrated objective function: saliency labels of superpixels are involved in a classification term conditioned on the salient object existence variable, which in turn depends on both global image and regional saliency features and saliency labels assignments. The loss function also considers both image-level and regionlevel mis-classifications. Extensive evaluation on benchmark datasets validate the effectiveness of our proposed joint approach compared to the baseline and state-of-the-art models.

Keywords

salient object detection / existence prediction / joint inference / saliency detection

Cite this article

Download citation ▾
Huaizu JIANG, Ming-Ming CHENG, Shi-Jie LI, Ali BORJI, Jingdong WANG. Joint salient object detection and existence prediction. Front. Comput. Sci., 2019, 13(4): 778-788 DOI:10.1007/s11704-017-6613-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Snalysis and Machine Intelligence, 1998, 20(11): 1254–1259

[2]

Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185–207

[3]

Borji A, Sihite D N, Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Transactions on Image Processing, 2013, 22(1): 55–69

[4]

Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H Y. Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353–367

[5]

Zhang G X, Cheng M M, Hu S M, Martin R R. A shape-preserving approach to image resizing. Computer Graphics Forum, 2009, 28(7): 1897–1906

[6]

Chen T, Cheng M M, Tan P, Shamir A, Hu S M. Sketch2photo: Internet image montage. ACM Transactions on Graphics (TOG), 2009, 28(5): 124

[7]

Chen T, Tan P, Ma L Q, Cheng M M, Shamir A, Hu S M. Poseshop: human image database construction and personalized content synthesis. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(5): 824–837

[8]

Cheng M M, Mitra N J, Huang X, Hu S M. Salientshape: group saliency in image collections. The Visual Computer, 2014, 30(4): 443–453

[9]

Wang J, Quan L, Sun J, Tang X, Shum H Y. Picture collage. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2006, 347–354

[10]

Abdulmunem A, Lai Y K, Sun X. Saliency guided local and global descriptors for effective action recognition. Computational Visual Media, 2016, 2(1): 97–106

[11]

Zhang J, Han Y, Jiang J. Tucker decomposition-based tensor learning for human action recognition. Multimedia Systems, 2016, 22(3): 343–353

[12]

Hu S M, Chen T, Xu K, Cheng M M, Martin R R. Internet visual media processing: a survey with graphics and vision applications. The Visual Computer, 2013, 29(5): 393–405

[13]

Cheng M M, Hou Q B, Zhang S H, Rosin P L. Intelligent visual media processing: when graphics meets vision. Journal of Computer Science and Technology, 2017, 32(1): 110–121

[14]

Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S. Salient object detection: a discriminative regional feature integration approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2083–2090

[15]

Zhao R, Ouyang W, Li H, Wang X. Saliency detection by multi-context deep learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1265–1274

[16]

Li G, Yu Y. Visual saliency based on multiscale deep features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 5455–5463

[17]

Perazzi F, Krähenbühl P, Pritch Y, Hornung A. Saliency filters: contrast based filtering for salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 733–740

[18]

Zhu W, Liang S, Wei Y, Sun J. Saliency optimization from robust background detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2814–2821

[19]

Li X, Lu H, Zhang L, Ruan X, Yang M H. Saliency detection via dense and sparse reconstruction. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 2976–2983

[20]

LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324

[21]

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of the Neural Information Processing Systems Conference. 2012, 1106–1114

[22]

Borji A. What is a salient object? a dataset and a baseline model for salient object detection. IEEE Transactions on Image Processing, 2015, 24(2): 742–756

[23]

Wang P, Wang J, Zeng G, Feng J, Zha H, Li S. Salient object detection for searched Web images via global saliency. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 3194–3201.

[24]

Boykov Y, Kolmogorov V. An experimental comparison of mincut/ max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124–1137

[25]

Borji A, Cheng M M, Hou Q, Jiang H, Li J. Salient object detection: a survey. 2014, arXiv preprint arXiv:1411.5878

[26]

Borji A, Cheng M M, Jiang H, Li J. Salient object detection: a benchmark. IEEE Transactions on Image Processing, 2015, 24(12): 5706–5722

[27]

Han J, Liu N, Zhang D. Visual saliency detection and applications: a survey. Frontiers of Computer Science, 2017

[28]

Achanta R, Hemami S, Estrada F, Süsstrunk S. Frequency-tuned salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1597–1604

[29]

Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926

[30]

Tian Y, Li J, Yu S, Huang T. Learning complementary saliency priors for foreground object segmentation in complex scenes. International Journal of Computer Vision, 2015, 111(2): 153–170

[31]

Fang S, Li J, Tian Y, Huang T, Chen X. Learning discriminative subspaces on random contrasts for image saliency analysis. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5): 1095–1108

[32]

Margolin R, Tal A, Zelnik-Manor L. What makes a patch distinct? In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1139–1146

[33]

Cheng M M, Mitra N J, Huang X, Torr P H, Hu S M. Global contrast based salient region detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569–582

[34]

Borji A, Itti L. Exploiting local and global patch rarities for saliency detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 478–485

[35]

Qi W, Cheng M M, Borji A, Lu H, Bai L F. SaliencyRank: two-stage manifold ranking for salient object detection. Computational Visual Media, 2015, 1(4): 309–320

[36]

Jiang H, Wang J, Yuan Z, Liu T, Zheng N, Li S. Automatic salient object segmentation based on context and shape prior. In: Proceedings of the British Machine Vision Conference (BMVC). 2011

[37]

Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation. International Journal of Computer Vision, 2004, 59(2): 16–181

[38]

Cheng M M, Liu Y, Hou Q, Bian J, Torr P, Hu S M, Tu Z. HFS: hierarchical feature selection for efficient image segmentation. In: Proceedings of European Conference on Computer Vision. 2016, 867–882

[39]

Yan Q, Xu L, Shi J, Jia J. Hierarchical saliency detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1155–1162

[40]

Wei Y, Wen F, Zhu W, Sun J. Geodesic saliency using background priors. In: Proceedings of European Conference on Computer Vision. 2012, 29–42

[41]

Yang C, Zhang L, Lu H, Ruan X, Yang M H. Saliency detection via graph-based manifold ranking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 3166–3173

[42]

Jiang B, Zhang L, Lu H, Yang C, Yang M H. Saliency detection via absorbing Markov chain. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1665–1672

[43]

Zhang J, Sclaroff S. Saliency detection: a boolean map approach. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 153–160

[44]

Chang K Y, Liu T L, Chen H T, Lai S H. Fusing generic objectness and visual saliency for salient object detection. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 914–921

[45]

Jiang P, Ling H, Yu J, Peng J. Salient region detection by UFO: uniqueness, focusness and objectness. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1976–1983

[46]

Jia Y, Han M. Category-independent object-level saliency detection. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1761–1768

[47]

Cheng M M, Warrell J, Lin W Y, Zheng S, Vineet V, Crook N. Efficient salient region detection with soft image abstraction. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1529–1536

[48]

Mai L, Niu Y, Liu F. Saliency aggregation: a data-driven approach. In: Proceedings of IEEE International Conference on Computer Vision. 2013, 1131–1138

[49]

Lu S, Mahadevan V, Vasconcelos N. Learning optimal seeds for diffusion-based salient object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 2790–2797

[50]

Mehrani P, Veksler O. Saliency segmentation based on learning and graph cut refinement. In: Proceedings of the British Machine Vision Conference (BMVC). 2010, 1–12

[51]

Kim J, Han D, Tai Y W, Kim J. Salient region detection via highdimensional color transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 883–890

[52]

Khuwuthyakorn P, Robles-Kelly A, Zhou J. Object of interest detection by saliency learning. In: Proceedings of European Conference on Computer Vision. 2010

[53]

Hou Q, Cheng M M, Hu X, Borji A, Tu Z, Torr P. Deeply supervised salient object detection with short connections. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2017, 5300–5309

[54]

Zhang J, Ma S, Sameki M, Sclaroff S, Betke M, Lin Z, Shen X, Price B, Mech R. Salient object subitizing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4045–4054

[55]

Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: a large-scale hierarchical image database. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 248–255

[56]

Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 580–587

[57]

Yang S, Luo P, Loy C C, Tang X. From facial parts responses to face detection: a deep learning approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3676–3684

[58]

Cimpoi M, Maji S, Vedaldi A. Deep filter banks for texture recognition and segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 3828–3836

[59]

Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for finegrained visual recognition. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 1449–1457

[60]

Su H, Maji S, Kalogerakis E, Learned-Miller E. Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 945–953

[61]

Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of European Conference on Computer Vision. 2014, 818–833

[62]

Do T M T, Artières T. Regularized bundle methods for convex and non-convex risks. Journal of Machine Learning Research, 2012, 13: 3539–3583

[63]

Xiao J, Hays J, Ehinger K A, Oliva A, Torralba A. SUN database: large-scale scene recognition from abbey to zoo. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 3485–3492

[64]

Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A. Describing textures in the wild. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3606–3613

[65]

Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 853–860

[66]

Huang H, Zhang L, Zhang H C. Arcimboldo-like collage using internet images. ACM Transactions on Graphics, 2011, 30(6): 155

[67]

Liu H, Zhang L, Huang H. Web-image driven best views of 3D shapes. The Visual Computer, 2012, 28(3): 279–287

[68]

Wei Y, Liang X, Chen Y, Shen X, Cheng M M, Feng J, Zhao Y, Yan S. STC: a simple to complex framework for weakly-supervised semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2314–2320

[69]

Chia A Y S, Zhuo S, Gupta R K, Tai Y W, Cho S Y, Tan P, Lin S. Semantic colorization with Internet images. ACM Transactions on Graphics, 2011, 30(6): 156

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (565KB)

Supplementary files

Supplementary Material

1120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/