Crowd counting via learning perspective for multi-scale multi-view Web images
Chong SHANG , Haizhou AI , Yi YANG
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (3) : 579 -587.
Crowd counting via learning perspective for multi-scale multi-view Web images
Estimating the number of people in Web images still remains a challenging problem owing to the perspective variation, different views, and diverse backgrounds. Existing deep learning models still have difficulties in dealing with scenarios where the size of a person is either extremely large or extremely small. In this paper, we propose a novel perspective-aware architecture to estimate the number of people in a crowd in web images. Specifically,we use a two-stage framework, where we first learn a policy network to infer the perspective of the target scene, which outputs a scale label for the subsequent perspective normalization. Next, given the aligned inputs, we further adjust the scale-specific counting network to regress the final count. Experiments on challenging datasets demonstrate our approach can deal with a large perspective variation and that we have achieved state-of-theart results.
crowd counting / Web images / perspective inference
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
Supplementary files
/
| 〈 |
|
〉 |