Visual tracking using discriminative representation with 2 regularization

Haijun WANG, Hongjuan GE

PDF(1639 KB)
PDF(1639 KB)
Front. Comput. Sci. ›› 2019, Vol. 13 ›› Issue (1) : 199-211. DOI: 10.1007/s11704-017-6434-9
RESEARCH ARTICLE

Visual tracking using discriminative representation with 2 regularization

Author information +
History +

Abstract

In this paper, we propose a novel visual tracking method using a discriminative representation under a Bayesian framework. First, we exploit the histogram of gradient (HOG) to generate the texture features of the target templates and candidates. Second, we introduce a novel discriminative representation and 2-regularized least squares method to solve the proposed representation model. The proposed model has a closed-form solution and very high computational efficiency. Third, a novel likelihood function and an update scheme considering the occlusion factor are adopted to improve the tracking performance of our proposed method. Both qualitative and quantitative evaluations on 15 challenging video sequences demonstrate that our method can achieve more robust tracking results in terms of the overlap rate and center location error.

Keywords

visual tracking / discriminative representation / Bayesian framework / closed-form solution

Cite this article

Download citation ▾
Haijun WANG, Hongjuan GE. Visual tracking using discriminative representation with 2 regularization. Front. Comput. Sci., 2019, 13(1): 199‒211 https://doi.org/10.1007/s11704-017-6434-9

References

[1]
Li A, Lin M, Wu Y, Yang M H, Yan S C. NUS-PRO: a new visual tracking challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 335–349
CrossRef Google scholar
[2]
Wu Y, Lim J, Yang M H. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848
CrossRef Google scholar
[3]
Zhang K H, Zhang L, Yang M H. Fast compressive tracking. IEEE Transations on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002–2015
CrossRef Google scholar
[4]
Li X, Shen C H, Dick A, Hengel A. Learning compact binary codes for visual tracking. In: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2419–2426
CrossRef Google scholar
[5]
Zhang K H, Zhang L, Yang M H, Hu Q H. Robust object tracking via active feature selection. IEEE Transactions Circuits and Systems for Video Technology, 2013, 23(11): 1957–1967
CrossRef Google scholar
[6]
Song H H. Robust visual tracking via online informative feature selection. Electronics Letters, 2014, 50(25): 1931–1933.
CrossRef Google scholar
[7]
Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In: Proceedings of the 22nd IEEE Conference on Computer Vision and Pattern Recognition. 2009, 983–990
[8]
Zhang K H, Liu Q S, Wu Y, Yang M H. Robust visual tracking via convolutional networks without training. IEEE Transations on Image Processing, 2016, 25(4): 1779–1792
CrossRef Google scholar
[9]
Yan J, Chen X, Deng D X, Zhu Q P. Visual object tracking via online sparse instance learning. Journal of Visual Communication and Image Representation, 2015, 26: 231–246
CrossRef Google scholar
[10]
Zhang K H, Zhang L, Yang M H. Real-time object tracking via online discriminative feature selection. IEEE Transactions on Image Processing, 2013, 22(12): 4664–4677
CrossRef Google scholar
[11]
Song H H, Zheng Y H, Zhang K H. Robust visual tracking via selfsimilarity learning. Electronics Letters, 2017, 53(1): 20–22
CrossRef Google scholar
[12]
Yang X, Wang M, Zhang L M, Sun F M, Hong R C, Qi M B. An efficient tracking system by orthogonalized templates. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3187–3197
CrossRef Google scholar
[13]
Wang D, Lu H C, Xiao Z Y, Yang M H. Inverse sparse tracker with a locally weighted distance metric. IEEE Transactions on Image Processing, 2015, 24(9): 2646–2657
CrossRef Google scholar
[14]
Wang D, Lu H C. Online visual tracking via two view sparse representation. IEEE Signal Processing Letters, 2014, 21(9): 1031–1034
CrossRef Google scholar
[15]
Han Y H, Yang Y, Yan Y, Ma Z G, Sebe N, Zhou X F. Semisupervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(2): 252–264
CrossRef Google scholar
[16]
Han Y H, Wu F, Tian Q, Zhuang Y T. Image annotation by input-output structural grouping sparsity. IEEE Transactions on Image Processing, 2012, 21(6): 3066–3079
CrossRef Google scholar
[17]
Yang J, Chu D L, Zhang L, Xu Y, Yang J Y. Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7): 1023–1035
CrossRef Google scholar
[18]
Wright J, Yang A Y, Ganesh A, Sastry S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210–227
CrossRef Google scholar
[19]
Zhuang B H, Lu H C, Xiao Z Y, Wang D. Visual tracking via discriminative sparse similarity map. IEEE Transactions on Image Processing, 2014, 23(4): 1872–1881
CrossRef Google scholar
[20]
Hu H W, Ma B, Jia Y D. Multi-task L0 gradient minimization for visual tracking. Neurocomputing, 2015, 154(22): 41–49
CrossRef Google scholar
[21]
Yoon J H, Yang M H, Yoon K J. Interacting multiview tracker. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 903–917
CrossRef Google scholar
[22]
Pan J S, Lim J, Su Z X, Yang M H. L0-regularized object representation for visual tracking. In: Proceedings of the British Machine Vision Conference. 2014, 1–12
CrossRef Google scholar
[23]
Ma B, Shen J B, Liu Y B, Hu H W, Shao L, Li X L. Visual tracking using strong classifier and structural local sparse descriptors. IEEE Transactions on Multimedia, 2015, 17(10): 1818–1828
CrossRef Google scholar
[24]
Mei X, Ling H B. Robust visual tracking using l1 minimization. In: Proceedings of the 12th IEEE International Conference on Computer Vision. 2009, 1436–1443
[25]
Bao C L, Wu Y, Ling H B, Ji H. Real time robust l1 tracker using accelerated proximal gradient approach. In: Proceedings of the 25th IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1830–1837
[26]
Jia X, Lu H C, Yang M H. Visual tracking via coarse and fine structural local sparse appearance models. IEEE Transactions on Image Processing, 2016, 25(10): 4555–4564
CrossRef Google scholar
[27]
Zhong W, Lu H C, Yang M H. Robust object tracking via sparse collaborative appearance model. IEEE Transactions on Image Processing, 2014, 23(5): 2356–2368
CrossRef Google scholar
[28]
Wang D, Lu H C, Yang M H. Least soft-threshold squares tracking. In: Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2371–2378
CrossRef Google scholar
[29]
Wu Y W, Yuan J S, Tan P Y, Jia Y D, Zhang J. Robust distracterresistive tracker via learning a multi-component discriminative dictionary. IEEE Transactions on Image Processing, submitted.
[30]
Wang D, Lu H C, Yang M H. Kernel collaborative face recognition. Pattern Recognition, 2015, 48(10): 3025–3237
CrossRef Google scholar
[31]
Zhang L, Yang M H, Feng X C. Sparse representation or collaborative representation: Which helps face recognition? In: Proceedings of the 13th IEEE International Conference on Computer Vision. 2011, 471–478
CrossRef Google scholar
[32]
Cai S J, Zhang L, Zuo W M, Feng X C. A probabilistic collaborative representation based approach for pattern classification. In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition. 2016, 2950–2959
CrossRef Google scholar
[33]
Shi S F, Eriksson A, Hengel A, Shen C H. Is face recognition really a compressive sensing problem? In: Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition. 2011, 553–560
CrossRef Google scholar
[34]
Xiao Z Y, Lu H C, Wang D. L2-RLS based object tracking. IEEE Transaction on Circuits and Systems for Video Technology, 2014, 24(8): 1301–1308
CrossRef Google scholar
[35]
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 18th IEEE Conference on Computer Vision and Pattern Recognition. 2005, 886–893
CrossRef Google scholar
[36]
Henriques J, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the 12th European Conference on Computer Vision. 2012, 702–715
CrossRef Google scholar
[37]
Xu Y, Zhong Z F, Yang J, You J, Zhang D. A new discriminative sparse representation method for robust face recognition via l2 regularization. IEEE Transactions on Neural Networks and Learning Systems, 2016, PP(99): 1–10
[38]
Jia X, Lu H C, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the 25th IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829
[39]
Wang D, Lu H C. On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Processing, 2013, 93(6): 1608–1623
CrossRef Google scholar
[40]
Wang D, Lu H C, Yang M H. Online object tracking with sparse prototypes. IEEE Transactions on Image Processing, 2013, 22(1): 314–325
CrossRef Google scholar
[41]
Wang D, Lu H C. Visual tracking via probability continuous outlier model. In: Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3478–3485
CrossRef Google scholar
[42]
Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceedings of the 19th IEEE Conference on Computer Vision and Pattern Recognition. 2006, 798–805
CrossRef Google scholar
[43]
Kwon J S, Lee K M. Visual tracking decomposition. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1269–1276
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1639 KB)

Accesses

Citations

Detail

Sections
Recommended

/