Visual understanding by mining social media: recent advances and challenges

Xueming WANG , Zechao LI , Jinhui TANG

Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (3) : 406 -422.

PDF (2667KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (3) : 406 -422. DOI: 10.1007/s11704-017-6377-1
REVIEW ARTICLE

Visual understanding by mining social media: recent advances and challenges

Author information +
History +
PDF (2667KB)

Abstract

With the rapid increase in social websites that has dramatically increased the volume of social media, which includes the use of images and videos, visual understanding has attracted great interest in several areas such as multimedia, computer vision, and pattern recognition. Valuable auxiliary resources available on social websites, such as user-provided tags, aid in the tasks of visual understanding. Therefore, several methods have been proposed for exploring the auxiliary resources for tag refinement, image retrieval, and media summarization. This work conducts a comprehensive survey of recent advances in visual understanding by mining social media in order to discuss their merits and limitations. We then analyze the difficulties and challenges of visual understanding followed by several possible future research directions.

Keywords

social tag / visual understanding / visual representation / tag refinement / image retrieval / summarization

Cite this article

Download citation ▾
Xueming WANG, Zechao LI, Jinhui TANG. Visual understanding by mining social media: recent advances and challenges. Front. Comput. Sci., 2018, 12(3): 406-422 DOI:10.1007/s11704-017-6377-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chua T S, Tang J H, Hong R C, Li H J, Luo Z P, Zheng Y T. NUSWIDE: A real-world web image database from national university of singapore. In: Proceedings of ACM International Conference on Image and Video Retrieval. 2009

[2]

Liu D, Yan S C, Hua X S, Zhang H J. Image retagging using collaborative tag propagation. IEEE Transactions on Multimedia, 2011, 13(4): 702–712

[3]

Li Z C, Liu J, Tang J H, Lu H Q. Projective matrix factorization with unified embedding for social image tagging. Computer Vision and Image Understanding, 2014, 124: 71–78

[4]

Liu Q L, Li Z C. Projective nonnegative matrix factorization for social image retrieval. Neurocomputing, 2016, 172: 19–26

[5]

Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. Contentbased image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349–1380

[6]

Datta R, Joshi D, Li J, Wang J Z. Image retrieval: ideas, influences, and trends of the new age. ACM Computing Surveys, 2008, 40(2): 5

[7]

Wang M, Ni B B, Hua X S, Chua T S. Assistive tagging: a survey of multimedia tagging with human-computer joint exploration. ACM Computing Surveys, 2012, 44(4): 25

[8]

Mei T, Rui Y, Li S P, Tian Q. Multimedia search reranking: a literature survey. ACM Computing Surveys, 2014, 46(3): 38:1–38:36

[9]

Qi G J, Aggarwal C, Tian Q, Ji H, Huang T. Exploring context and content links in social media: a latent space method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 850–862

[10]

Ma Z G, Nie F P, Yang Y, Uijlings J R, Sebe N.Web image annotation via subspace-sparsity collaborated feature selection. IEEE Transactions on Multimedia, 2012, 14(4): 1021–1030

[11]

Gong Y C, Ke Q F, Isard M, Lazebnik S. A multi-view embedding space for modeling internet images, tags, and their semantics. International Journal of Computer Vision, 2013, 106(2): 210–233

[12]

Kang C C, Xiang S M, Liao S C, Xu C S, Pan C H. Learning consistent feature representation for cross-modal multimedia retrieval. IEEE Transactions on Multimedia, 2015, 17(3): 370–381

[13]

Li K, Yang J Y, Jiang J M. Nonrigid structure from motion via sparse representation. IEEE Transactions on Cybernetics, 2015, 45(8): 1401–1413

[14]

Li Z C, Tang J H, He X F. Robust structured nonnegative matrix factorization for image representation. IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2017.2691725

[15]

Huiskes M, Lew M. The MIR flickr retrieval evaluation. In: Proceedings of ACM International Conference on Multimedia Information Retrieval. 2008, 39–43

[16]

Tang J H, Shu X B, Li Z C, Qi G J, Wang J D. Generalized deep transfer networks for knowledge propagation in heterogeneous domains. ACM Transactions on Multimedia Computing Communications and Applications (TOMM), 2016, 12(4s): 68

[17]

Hua X S, Yang L J, Wang J D, Wang J, Ye M, Wang K, Rui Y, Li J. Clickture: a large-scale real-world image dataset. Mocrosoft Research Technical Report MSR-TR-2013-75. 2013

[18]

Huiskes M, Thomee B, Lew M. New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative. In: Proceedings of ACM International Conference on Multimedia Information Retrieval. 2010, 527–536

[19]

Hua X S, Yang L J, Wang J D, Wang J, Ye M, Wang K, Rui Y, Li J. Clickage: towards bridging semantic and intent gaps via mining click logs of search engines. In: Proceedings of the 21st ACM International Conference on Multimedia. 2013, 243–252

[20]

Sivic J, Zisserman A. Video Google: a text retrieval approach to object matching in videos. In: Proceedings of European Conference on Computer Vision. 2003

[21]

Li Z C, Yang Y, Liu J, Zhou X F, Lu H Q. Unsupervised feature selection using nonnegative spectral analysis. In: Proceedings of National Conference on Artificial Intelligence. 2012, 1026–1032

[22]

Yang Y, Ma Z G, Hauptmann A G, Sebe N. Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Transactions on Multimedia, 2013, 15(3): 661–669

[23]

Li Z C, Liu J, Yang Y, Zhou X F, Lu H Q. Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Transactions on Knowledge and Data Engineering, 2014, 9(26): 2138–2150

[24]

Tang J L, Liu H. An unsupervised feature selection framework for social media data. IEEE Transactions on Knowledge and Data Engineering, 2014, 12(26): 2914–2927

[25]

Hong R C, Wang M, Gao Y, Tao D C, Li X L, Wu X D. Image annotation by multiple-instance learning with discriminative feature mapping and selection. IEEE Transactions on Cybernetics, 2014, 44(5): 669–680

[26]

Li Z C, Tang J H. Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Transactions on Image Processing, 2015, 12(24): 5343–5355

[27]

Shi C J, Ruan Q Q, Guo S, Tian Y. Sparse feature selection based on l2,1/2-matrix norm for web image annotation. Neurocomputing, 2015, 151: 424–433

[28]

Chandrilka P, Jawahar C V. Multi modal semantic indexing for image retrieval. In: Proceedings of ACMInternational Conference on Image and Video Retrieval. 2010, 342–349

[29]

Rasiwasia N, Pereira J C, Coviello E, Doyle G, Lanckriet G R, Levy R, Vasconcelos N. A new approach to cross-modal multimedia retrieval. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 251–260

[30]

Hwang S J, Grauman K. Learning the relative importance of objects from tagged images for retrieval and cross-model search. International Journal of Computer Vision, 2012, 100(2): 134–153

[31]

Li Z C, Liu J, Lu H Q. Structure preserving non-negative matrix factorization for dimensionality reduction. Computer Vision and Image Understanding, 2013, 9(117): 1175–1189

[32]

Li Z C, Liu J, Lu H Q. Sparse constraint nearest neighbor selection in cross-media retrieval. In: Proceedings of the 17th IEEE International Conference on Image Processing. 2010, 1465–1468

[33]

Liu X C, Song X N, Jiang J M. The extraction of powerful and attractive video contents based on one class SVM. In: Proceedings of Pacific Rim Conference on Multimedia. 2015, 375–382

[34]

Yan Y, Xu Z W, Liu G W, Ma Z G, Sebe N. Glocal structural feature selection with sparsity for multimedia data understanding. In: Proceedings of the 21st ACM International Conference on Multimedia. 2013, 537–540

[35]

Chartrand R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Process Letters, 2007, 14(10): 707–710

[36]

Chen X J, Xu F M, Ye Y Y. Lower bound theory of nonzero entries in solutions of l2-lpminimization. SIAM Journal on Scientific Computing, 2010, 32(5): 2832–2852

[37]

Song X N, Zhang J G, Han Y H, Jiang J M. Semi-supervised feature selection via hierarchical regression forWeb image classification. Multimedia Systems, 2016, 22: 41–49

[38]

Wang J J, Gong Y H. Discovering image semantics in codebook derivative space. IEEE Transactions on Multimedia, 2012, 14(4): 986–994

[39]

Kuo Y H, Cheng W H, Lin H T, Hsu W H. Unsupervised semantic feature discovery for image object retrieval and tag refinement. IEEE Transactions on Multimedia, 2012, 14(4): 1079–1090

[40]

Lu Z W, Peng Y X. Image annotation by semantic sparse recoding of visual content. In: Proceedings of the 20th ACM International Conference on Multimedia. 2012, 499–508

[41]

Lu Z W, Peng Y X. Learning descriptive visual representation by semantic regularized matrix factorization. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. 2013, 1523–1529

[42]

Lu Z W, Wang L W, Wen J R. Direct semantic analysis for social image classification. In: Proceedings of AAAI Conference on Artificial Intelligence. 2014, 1258–1264

[43]

Ballan L, Uricchio T, Seidenari L, Bimbo A D. A cross-media model for automatic image annotation. In: Proceedings of ACM International Conference on Multimedia Retrieval. 2014

[44]

Tao L, Ip H, Wang Y L, Shu X. Exploring shared subspace and joint sparsity for canonical correlation analysis. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. 2014, 1887–1890

[45]

Hofmann T. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 2001, 42(1-2): 177–196

[46]

Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993–1022

[47]

Sun L, Ji S W, Ye J P. Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions, and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 194–200

[48]

Sharma A, Kumar A, III H D, Jacobs D W. Generalized multiview analysis: a discriminative latent space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 2160–2167

[49]

Murthy V N, Maji S, Manmatha R. Automatic image annotation using deep learning representations. In: Proceedings of ACM Int’l Conf. on Multimedia Retrieval. 2015, 603–606

[50]

Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of the Neural Information Processing Systems Conference. 2012, 1097–1105

[51]

Andrew G, Arora R, Bilmes J, Livescu K. Deep canonical correlation analysis. In: Proceedings of International Conference on Machine Learning. 2013, 1247–1255

[52]

Frome A, Corrado G, Shlens J, Bengio S, Dean J, Mikolov T. Devise: A deep visual-semantic embedding model. In: Proceedings of the Neural Information Processing Systems Conference. 2013, 2121–2129

[53]

Liu Y, Shi Z C, Li X, Wang G. Click-through-based deep visualsemantic embedding for image search. In: Proceedings of the 23rd ACM International Conference on Multimedia. 2015, 955–958

[54]

Li Z C, Liu J, Tang J H, Lu H Q. Robust structured subspace learning for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 2085–2098

[55]

Tang J H, Zha Z J, Tao D C, Chua T S. Semantic-gap-oriented active learning for multilabel image annotation. IEEE Transactions on Image Processing, 2012, 21(4): 2354–2360

[56]

Li Z C, Liu J, Xu C S, Lu H Q. Mlrank: Multi-correlation learning to rank for image annotation. Pattern Recognition, 2013, 46(10): 2700–2710

[57]

Zhang J G, Han Y H, Jiang J M. Tensor rank selection for multimedia analysis. Journal of Visual Communication and Image Representation, 2015, 30: 376–392

[58]

Tang J H, Shu X B, Qi Q J, Li Z C, Wang M, Yan S C, Jain R. Triclustered tensor completion for social-aware image tag refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1662–1674

[59]

Barnard K, Duygulu P, Forsyth D, Freitas N D, Blei D M, Jordan M I. Matching words and pictures. Journal ofMachine Learning Research, 2003, 3: 1107–1135

[60]

Tang J H, Yan S C, Hong R C, Qi G J, Chua T S. Inferring semantic concepts from community-contributed images and noisy tags. In: Proceedings of the 17th International Conference on Multimedia. 2009, 223–232

[61]

Liu D, Hua X S, Yang L J, Wang M, Zhang H J. Tag ranking. In: Proceedings of the 18th ACM International Conference on World Wide Web. 2009, 351–360

[62]

Liu D, Hua X S, Wang M, Zhang H J. Tag retagging. In: Proceedings of ACM Conference on Multimedia. 2010

[63]

Liu D, Yan S C, Rui Y, Zhang H J. Unified tag analysis with multiedge graph. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 25–34

[64]

Tang J H, Hong R C, Yan S C, Chua T S, Qi G J, Jain R. Image annotation by knn-sparse graph-based label propagation over noisily tagged web images. ACM Transactions on Intelligent Systems and Technology, 2011, 2(2): 14: 1–15

[65]

Zhuang J F, Hoi S C. A two-view learning approach for image tag ranking. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining. 2011, 625–634

[66]

Zhang X M, Zhao X J, Li Z J, Xia J L, Jain R, Chao W H. Social image tagging using graph-based reinforcement on multi-type interrelated objects. Signal Processing, 2013, 93(8): 2178–2189

[67]

Zhu X F, Nejdl W, Georgescu M. An adaptive teleportation random walk model for learning social tag relevance. In: Proceedings of the 37th ACM SIGIR International Conference on Research and Development in Information Retrieval. 2014, 223–232

[68]

Li Z C, Liu J, Zhu X B, Liu T L, Lu H Q. Image annotation using multi-correlation probabilistic matrix factorization. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 1187–1190

[69]

Zhu G Y, Yan S C, Ma Y. Image tag refinement towards low-rank, content-tag prior and error sparsity. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 461–470

[70]

Feng Z Y, Feng S H, Jin R, Jain A K. Image tag completion by noisy matrix recovery. In: Proceedings of European Conference on Computer Vision, Part I. 2014, 424–438

[71]

Yang Y, Gao Y, Zhang H W, Shao J, Chua T S. Image tagging with social assistance. In: Proceedings of ACM International Conference on Multimedia Retrieval. 2014

[72]

Liu J, Zhang Y F, Li Z C, Lu H Q. Correlation consistency constrained probabilistic matrix factorization for social tag refinement. Neurocomputing, 2013, 119: 3–9

[73]

Li Z C, Liu J, Lu H Q. Nonlinear matrix factorization with unified embedding for social tag relevance learning. Neurocomputing, 2013, 105: 38–44

[74]

Li X, Shen B, Liu B D, Zhang Y J. A locality sensitive low-rank model for image tag completion. IEEE Transactions on Multimedia, 2016, 18(3): 474–483

[75]

Li Z C, Tang J H. Weakly-supervised deep matrix factorization for social image understanding. IEEE Transactions on Image Processing (TIP), 2017, 26(1): 276–288

[76]

Li Z C, Tang J H. Weakly-supervised deep nonnegative low-rank model for social image tag refinement and assignment. In: Proceedings of AAAI Conference on Artificial Intelligence. 2017

[77]

Sang J T, Xu C S, Liu J. User-aware image tag refinement via ternary semantic analysis. IEEE Transactions on Multimedia, 2012, 14(3): 883–895

[78]

Qian Z M, Zhong P, Wang R S. Tag refinement for user-contributed images via graph learning and nonnegative tensor factorization. IEEE Signal Processing Letters, 2015, 22(9): 1302–1305

[79]

Wang J D, Zhou J Z, Xu H, Mei T, Hua X S, Li S P. Image tag refinement by regularized latent dirichlet allocation. Computer Vision and Image Understanding, 2014, 124: 61–70

[80]

Niu Z X, Hua G, Gao X B, Tian Q. Semi-supervised relational topic model for weakly annotated image recognition in social media. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 4233–4240

[81]

Lin J, Yuan J S, Duan L Y, Luo S W, Gao W. Social image tagging by mining sparse tag patterns from auxiliary data. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2012, 7–12

[82]

Lin Z J, Ding G G, Hu M Q, Wang J M, Ye X J. Image tag completion via image-specific and tag-specific linear sparse reconstructions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1618–1625

[83]

Qian X M, Hua X S, Tang Y Y, Mei T. Social image tagging with diverse semantics. IEEE Transactions on Cybernetics, 2014, 44(12): 2493–2508

[84]

Wu L, Jin R, Jain A K. Tag completion for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(3): 716–727

[85]

Wu L, Yang L J, Yu N H, Hua X S. Learning to tag. In: Proceedings of the 18th International Conference on World Wide Web. 2009

[86]

Sun A X, Bhowmick S S, Chong J A. Social image tag recommendation by concept matching. In: Proceedings of the 19th ACM International Conference on Multimedia. 2011, 1181–1184

[87]

Garg N, Weber I. Personalized, interactive tag recommendation for flickr. In: Proceedings of ACM Conference on Recommender Systems. 2008

[88]

Li X R, Gavves E, Snoek C G M, Worring M, Smeulders A W. Personalizing automated image annotation using cross-entropy. In: Proceedings of the 19th ACM International Conference on Multimedia. 2011, 233–242

[89]

Liu J, Li Z C, Tang J H, Jiang Y, Lu H Q. Personalized geo-specific tag recommendation for photos on social websites. IEEE Transactions on Multimedia, 2014, 16(3): 588–600

[90]

Rafailidis D, Axenopoulos A, Etzold J, Manolopoulou S, Daras P. Content-based tag propagation and tensor factorization for personalized item recommendation based on social tagging. ACM Transactions on Interactive Intelligent Systems, 2014, 3(4): 26: 1–27

[91]

Li X R, Snoek C G M, Worring M. Learning tag relevance by neighbor voting for social image retrieval. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval. 2008, 180–187

[92]

Liu D, Hua X S, Wang M, Zhang H J. Boost search relevance for tagbased social image retrieval. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2009, 1636–1639

[93]

Gao Y, Wang M, Zha Z J, Shen J L, Li X L, Wu X D. Visual-textual joint relevance learning for tag-based social image search. IEEE Transactions on Image Processing, 2013, 22(1): 363–376

[94]

Sang J T, Xu C S, Lu D Y. Learn to personalized image search from the photo sharing websites. IEEE Transactions on Multimedia, 2012, 14(4): 963–974

[95]

Wang M, Wang K Y, Hua X S, Zhang H J. Towards a relevant and diverse search of social images. IEEE Transactions on Multimedia, 2010, 12(8): 829–842

[96]

Rudinac S, Hanjalic A, Larson M. Finding representative and diverse community contributed images to create visual summaries of geographic areas. In: Proceedings of the 19th ACM International Conference on Multimedia. 2011, 1109–1112

[97]

Jia Y Q, Salzmann M, Darrell T. Learning cross-modality similarity for multinomial data. In: Proceedings of IEEE International Conference on Computer Vision. 2011, 2407–2414

[98]

Pan Y W, Yao T, Mei T, Li H Q, Ngo C W, Rui Y. Click-throughbased cross-view learning for image search. In: Proceedings of the 37th ACM SIGIR International Conference on Research and Development in Information Retrieval. 2014

[99]

Feng F X, Wang X J, Li R F. Cross-modal retrieval with correspondence autoencoder. In: Proceedings of the 22nd ACM International Conference on Multimedia. 2014

[100]

Wang W, Yang X Y, Ooi B C, Zhang D X, Zhuang Y T. Effective deep learning-based multi-modal retrieval. The VLDB Journal, 2016, 25: 79–101

[101]

Wei Y C, Zhao Y, Lu C Y, Wei S K, Liu L Q, Zhu Z F, Yan S C. Cross-modal retrieval with cnn visual features: a new baseline. IEEE Transactions on Cybernetics, 2017, 47(2): 449–460

[102]

Wu L, Hoi S C, Jin R, Zhu J K, Yu N H. Distance metric learning from uncertain side information with application to automated photo tagging. In: Proceedings of the 17th ACM International Conference on Multimedia. 2009

[103]

Wu P C, Hoi S C, Zhao P L, He Y. Mining social images with distance metric learning for automated image tagging. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining. 2011, 197–206

[104]

Li Z C, Liu J, Jiang Y, Tang J H, Lu H Q. Low rank metric learning for social image retrieval. In: Proceedings of the 20th ACM International Conference on Multimedia. 2012, 853–856

[105]

Liu S W, Cui P, Zhu W W, Yang S Q, Tian Q. Social embedding image distance learning. In: Proceedings of the 22nd ACMInternational Conference on Multimedia. 2014, 617–626

[106]

Xia H, Wu P C, Hoi S C. Online multi-modal distance learning for scalable multimedia retrieval. In: Proceedings of the 6th ACM International Conference onWeb Search and DataMining. 2013, 455–464

[107]

Gao X Y, Hoi S C, Zhang Y D, Wan J, Li J T. SOML: Sparse online metric learning with application to image retrieval. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014, 1206–1212

[108]

Wu P C, Hoi S C, Zhao P L, Miao C Y, Liu Z Y. Online multi-modal distance metric learning with application to image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(2): 454–467

[109]

Li Z C, Tang J H. Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Transactions on Multimedia, 2015, 17(11): 1989–1999

[110]

Wu P C, Hoi S C, Xia H, Zhao P L,Wang D Y, Miao C Y. Online multimodaldeep similarity learning with application to image retrieval. In: Proceedings of the 21st ACM International Conference on Multimedia. 2013, 153–162

[111]

Zhuang Y T, Liu Y, Wu F, Zhang Y, Shao J. Hypergraph spectral hashing for similarity search of social image. In: Proceedings of the 19th ACM International Conference on Multimedia. 2011, 1457–1460

[112]

Li P, Wang M, Cheng J, Xu C S, Lu H Q. Spectral hashing with semantically consistent graph for image indexing. IEEE Transactions on Multimedia, 2013, 15(1): 141–152

[113]

Cheng J, Leng C, Li P, Wang M, Lu H Q. Semi-supervised multigraph hashing for scalable similarity search. Computer Vision and Image Understanding, 2014, 124: 12–21

[114]

Tang J H, Li Z C, Zhang L Y, Huang Q M. Semantic-aware hashing for social image retrieval. In: Proceedings of the 5th ACM International Conference on Multimedia Retrieval. 2015, 483–486

[115]

Tang J H, Li Z C, Wang M, Zhao R Z. Neighborhood discriminant hashing for large-scale image retrieval. IEEE Transactions on Image Processing, 2015, 24(9): 2827–2840

[116]

Lin J, Li Z C, Tang J H. Discriminative deep hashing for scalable face image retrieval. In: Proceedings of International Joint Conference on Artificial Intelligence. 2017

[117]

Tang J H, Li Z C, Zhu X. Supervised deep hashing for scalable face image retrieval. Pattern Recognition, 2017, doi: org/10.1016/j.patcog.2017.03.028

[118]

Tang J H, Li Z C. Weakly-supervised multimodal hashing for scalable social image retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 2017, doi: 10.1109/TCSVT.2017.2715227

[119]

Kennedy L, Naaman M, Ahern S, Nair R, Rattenbury T. How flickr helps us make sense of the world: context and content in communitycontributed media collections. In: Proceedings of the 15th ACM International Conference on Multimedia. 2007, 631–640

[120]

Hays J, Efros A A. IM2GPS: estimating geographic information from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8

[121]

Yang J C, Luo J B, Yu J, Huang T. Photo stream alignment and summarization for collaborative photo collection and sharing. IEEE Transactions on Multimedia, 2012, 14(9): 1642–1651

[122]

Li Z C, Tang J H, Wang X M, Liu J, Lu H Q. Multimedia news summarization in search. ACM Transactions on Intelligent Systems and Technology, 2016, 7(3): 33:1–33:20

[123]

Liu Y M, Xu D, Tsang I W, Luo J B. Using large-scale web data to facilitate textual query based retrieval of consumer photos. In: Proceedings of the 17th ACM International Conference on Multimedia. 2009, 55–64

[124]

Xu Y M L D, Tsang I W, Luo J B. Textual query of personal photos facilitated by large-scale web data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 1022–1036

[125]

Stefanie N, Ronny P, Uwe K. Photo summary: automated selection of representative photos from a digital collection. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval. 2011, 75:1–75:2

[126]

Hua X S, Lu L, Zhang H J. Optimization-based automated home video editing system. IEEE Transactions on Circuit and System for Video Technology, 2004, 14: 572–583

[127]

Ma Y F, Hua X S, Lu L, Zhang H J. A generic framework of user attention model and its application in video summarization. IEEE Transactions on Multimedia, 2005, 7(5): 907–919

[128]

Andaloussi S J, Mohamed A, Madrane N, Sekkaki A. Soccer video summarization using video content analysis and social media streams. In: Proceedings of IEEE/ACM International Symposium on Big Data Computing. 2014, 1–7

[129]

Khosla A, Hamid R, Lin C J, Sundaresan N. Large-scale video summarization using web-image priors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2013, 2698–2705

[130]

Xu C S, Zhang Y F, Zhu G Y, Rui Y, Lu H Q, Huang Q M. Using webcast text for semantic event detection in broadcast sports video. IEEE Transactions on Multimedia, 2008, 10: 1342–1355

[131]

Hong R C, Tang J H, Tan H K, Ngo C W, Yan S C, Chua T S. Beyond search: event-driven summarization for web videos. ACM Transactions on Multimedia Computing Communications, and Applications, 2011, 7(4): 35

[132]

Wan J, Wang D Y, Hoi S C, Wu P C, Zhu J K, Zhang Y D, Li J T. Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM International Conference on Multimedia. 2014, 157–166

[133]

Li G, Ma S B, Han Y H. Summarization-based video caption via deep neural networks. In: Proceedings of the 23rd ACM International Conference on Multimedia. 2015, 1191–1194

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2667KB)

Supplementary files

Supplementary Material

940

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/