A peep at knowledge science in a categorical prospect

Ruqian LU

Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (5) : 767 -768.

PDF (185KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (5) : 767 -768. DOI: 10.1007/s11704-016-6905-4
PERSPECTIVE

A peep at knowledge science in a categorical prospect

Author information +
History +
PDF (185KB)

Cite this article

Download citation ▾
Ruqian LU. A peep at knowledge science in a categorical prospect. Front. Comput. Sci., 2016, 10(5): 767-768 DOI:10.1007/s11704-016-6905-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Corry L. Nicolas Bourbaki and the concept of mathematical structure. Synthese, 1992, 92(3): 315–348

[2]

Mac Lane S. Categories for the working mathematician. Springer Science & Business Media, 1971

[3]

Shannon C E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3–55.

[4]

Petri C A. Kommunikation mit automaten. Dissertation for the Doctoral Degree. Darmstadt: Technical University, 1962

[5]

Feigenbaum E A, McCorduck P. The fifth generation, artificial intelligence and Japan’s computer challenge to the world. Boston: Addison- Wesley Pub. Co., 1983

[6]

Lu R. Looking for amathematical theory of knowledge. Proc. of KEST, 2004: 3–8

[7]

Lu R. Towards a mathematical theory of knowledge — Categorical analysis of knowledge. Journal of Computer Science and Technology, 2005, 20(6): 751–757

[8]

Crane L. Clock and category: is quantum gravity algebraic? Journal of Mathematical Physics, 1995, 36(11): 6180–6193

[9]

Baez J C, Dolan J. Categorification. 1998, arXiv preprint math/9802029

[10]

Barr M, Wells C. Category Theory for Computer Science. 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1998

[11]

Moggi E. Notions of computation and monads. Information and computation, 1991, 93(1): 55–92

[12]

Wang Q, Rong L. Typed category-theory based micro-view emergency knowledge representation. 2007, 568–574

[13]

Cockett J R B, Hofstra P J W. Introduction to Turing categories, Annals of Pure and Applied Logic, 2008, 156(2): 183–209

[14]

Soare R I. Recursively enumerable sets and degrees. Bulletin of the American Mathematical Society, 1978, 84(6): 1149–1181

[15]

Kleene S C, Post E L. The upper semi-lattice of degrees of recursive unsolvability. Annals of Mathematics, 1954, 59(3): 379–407

[16]

Li M, Vitányi P. An introduction to Kolmogorov complexity and its applications. Heidelberg: Springer, 1997

[17]

Leinster T. Higher operads, higher catagories. Cambridge: Cambridge University Press, 2004

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (185KB)

1026

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/