Filtering method of rock points based on BP neural network and principal component analysis

Jun XIAO , Sidong LIU , Liang HU , Ying WANG

Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (6) : 1149 -1159.

PDF (651KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (6) : 1149 -1159. DOI: 10.1007/s11704-016-6170-6
RESEARCH ARTICLE

Filtering method of rock points based on BP neural network and principal component analysis

Author information +
History +
PDF (651KB)

Abstract

Filtering is an essential step in the process of obtaining rock data. To the best of our knowledge, there are no special algorithms for use in the point clouds of rock masses. Existing filtering methods remove noisy points by fitting the surface of the ground and deleting the points above the surface around a range of values. This type of methods has certain limitations in rock engineering owing the uniqueness of the particular rockmass being studied. In this paper, a method for filtering the rock points is proposed based on a backpropagation (BP) neural network and principal component analysis (PCA). In the proposed method, a PCA is applied for feature extraction, and for obtaining the dimensional information, which can be used to effectively distinguish the rock and other points at different scales. A BP neural network, which has a strong nonlinear processing capability, is then used to obtain the exact points of rock with the above characteristics. In the present paper, the efficiency of the proposed technique is illustrated by classifying steep rocky slopes as rock and vegetation. A comparison with existing methods indicates the superiority of the proposed method in terms of the point cloud filtering of rock masses.

Keywords

rock filter / BP neural network / principal component analysis

Cite this article

Download citation ▾
Jun XIAO, Sidong LIU, Liang HU, Ying WANG. Filtering method of rock points based on BP neural network and principal component analysis. Front. Comput. Sci., 2018, 12(6): 1149-1159 DOI:10.1007/s11704-016-6170-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gigli G, Casagli N. Semi-automatic extraction of rock mass structural data from high resolution lidar point clouds. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 187–198

[2]

Jaboyedoff M, Oppikofer T, Abellán A, Derron M H, Loye A. Use of LIDAR in landslide investigations: a review. Natural Hazards, 2012, 61(1): 5–28

[3]

Heritage G L, Milan D J. Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology, 2009, 113(1): 4–11

[4]

Zhang K Q, Chen S C, Whitman D, Yan J H, Zhang C C. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 872–882

[5]

Vosselman G. Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 2000, 33: 935–942

[6]

Akel N A, Zilberstein O, Doytsher Y. Automatic DTM extraction from dense raw LIDAR data in urban areas. In: Proceedings of International Federation of Surveyors Working Week. 2003

[7]

Axelsson P. DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and RemoteSensing, 2000, 33: 111–118

[8]

Pingel T J, Clarke K C, Mcbride W A. An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77(1): 21–30

[9]

Zhang J X, Lin X G. Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 81: 44–59

[10]

Sui L, Zhang Y B, Zhang S, Chen W. Filtering of airborne LiDAR point cloud data based on progressive TIN. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1159–1163

[11]

Zhang Y K, Zhang X P, Zha H B, Zhang J S. A survey of topologically structural representation and computation of 3D point cloud data. Journal of Image and Graphics, 2008, 13(8): 1576–1587

[12]

Sithole G, Mapurisa W T. 3D object segmentation of point clouds using profiling techniques. South African Journal of Geomatics, 2012, 1(1): 60–76

[13]

Shi R M, Qi X L. Research on mixed indexing model for cloud points. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium. 2012, 5301–5303

[14]

Ma H C, Wang Z Y. Distributed data organization and parallel data retrieval methods for huge laser scanner point clouds. Computers and Geosciences, 2011, 37(2): 193–201

[15]

Gong J, Zhu Q, Zhong R F, Zhang Y T, Xie X. An efficient point cloud management method based on a 3D R-tree. Photogrammetric Engineering and Remote Sensing, 2012, 78(4): 373–381

[16]

Lichti D D. Spectral filtering and classification of terrestrial laser scanner point clouds. The Photogrammetric Record, 2005, 20(111): 218–240

[17]

Franceschi M, Teza G, Preto N, Pesci A, Galgaro A. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(6): 522–528

[18]

Kaasalainen S, Jaakkola A, Kaasalainen M, Krooks A, Kukko A. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods. Remote Sensing, 2011, 3(10): 2207–2221

[19]

Vandapel N, Huber D F, Kapuria A, Hebert M. Natural terrain classification using 3-D ladar data. In: Proceedings of IEEE International Conference on Robotics and Automation. 2004, 5117–5122

[20]

Lalonde J F, Vandapel N, Huber D F, Hebert M. Natural terrain classification using three-dimensional ladar data for ground robot mobility. Journal of Field Robotics, 2006, 23(10): 839–861

[21]

Brodu N, Lague D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68(1): 121–134

[22]

Burrough P A. Fractal dimensions of landscapes and other environmental data. Nature, 1981, 294(5838): 240–242

[23]

Wendt H, Abry P, Jaffard S. Bootstrap for empirical multifractal analysis. IEEE Signal Processing Magazine, 2007, 24(4): 38–48

[24]

Peng X, Lu J W, Zhang Y, Yan R. Automatic subspace learning via principal coefficients embedding. IEEE Transactions on Cybernetics, 2016, 47(11): 3583–3596

[25]

Peng X, Zhang L, Zhang Y, Tan K K. Learning locality-constrained collaborative representation for robust face recognition. Pattern Recognition, 2013, 47(9): 2794–2806

[26]

Ding Y Q, Fu Y M, Zhu F, Zan X. Comparison of missing data filling methods in bridge health monitoring system. In: Proceedings of IEEE International Conference on Cognitive Informatics and Cognitive Computing. 2013: 442–445

[27]

Moavenian M, Khorrami H. A qualitative comparison of Artificial Neural Networks and Support Vector Machines in ECG arrhythmias classification. Expert Systems with Applications, 2010, 37(4): 3088–3093

[28]

Zhong H M, Miao C Y, Shen Z Q, Feng Y H. Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings. Neurocomputing, 2014, 128(5): 285–295

[29]

Lato M, Kemeny J, Harrap R M, Bevan G. Rock bench: establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Computers and Feosciences, 2013, 50(1): 106–114

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (651KB)

Supplementary files

Supplementary Material

957

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/