Learning from context: a mutual reinforcement model for Chinese microblog opinion retrieval
Jingjing WEI , Xiangwen LIAO , Houdong ZHENG , Guolong CHEN , Xueqi CHENG
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (4) : 714 -724.
Learning from context: a mutual reinforcement model for Chinese microblog opinion retrieval
This study addresses the problem of Chinese microblog opinion retrieval, which aims to retrieve opinionated Chinese microblog posts relevant to a target specified by a user query. Existing studies have shown that lexicon-based approaches employed online public sentiment resources to rank sentimentwords relying on the document features. However, this approach could not be effectively applied to microblogs that have typical user-generated content with valuable contextual information: “user–user” interpersonal interactions and “user–post/comment” intrapersonal interactions. This contextual information is very helpful in estimating the strength of sentiment words more accurately. In this study, we integrate the social contextual relationships among users, posts/comments, and sentiment words into a mutual reinforcement model and propose a unified three-layer heterogeneous graph, on which a random walk sentiment word weighting algorithm is presented to measure the strength of opinion of the sentiment words. Furthermore, the weights of sentiment words are incorporated into a lexicon-based model for Chinese microblog opinion retrieval. Comparative experiments are conducted on a Chinese microblog corpus, and the results show that our proposed mutual reinforcement model achieves significant improvement over previous methods.
opinion retrieval / sentiment words / lexicon weighting / mutual reinforcement model
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
Supplementary files
/
| 〈 |
|
〉 |