Integrative cancer genomics: models, algorithms and analysis
Jinyu CHEN, Shihua ZHANG
Integrative cancer genomics: models, algorithms and analysis
In the past decade, the remarkable development of high-throughput sequencing technology accelerates the generation of large amount of multiple dimensional data such as genomic, epigenomic, transcriptomic and proteomic data. The comprehensive data make it possible to understand the underlying mechanisms of biology and disease such as cancer systematically. It also provides great challenges for computational cancer genomics due to the complexity, scale and noise of data. In this article, we aim to review the recent developments and progresses of computational models, algorithms and analysis of complex data in cancer genomics. These topics of this paper include the identification of driver mutations, the genetic heterogeneity analysis, genomic markers discovery of drug response, pan-cancer scale analysis and so on.
cancer genomics / model / algorithm / data integration / bioinformatics / computational biology
[1] |
HanahanD, Weinberg R A. The hallmarks of cancer. Cell, 2000, 100(1): 57–70
CrossRef
Google scholar
|
[2] |
HanahanD, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674
CrossRef
Google scholar
|
[3] |
The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216): 1061–1068
CrossRef
Google scholar
|
[4] |
The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474(7353): 609–615
CrossRef
Google scholar
|
[5] |
The International Cancer Genome Consortium. International network of cancer genome projects. Nature, 2010, 464(7291): 993–998
CrossRef
Google scholar
|
[6] |
BarretinaJ, Caponigro G, StranskyN , VenkatesanK, Margolin A A, KimS , WilsonC J, Lehár J, KryukovG V , SonkinD, ReddyA, LiuM, Murray L, BergerM F , MonahanJ E, MoraisP, MeltzerJ, Korejwa A, Jané-ValbuenaJ, MapaF A, Thibault J, Bric-FurlongE , RamanP, Shipway A, EngelsI H , ChengJ, YuG K, YuJ, AspesiP Jr, de SilvaM, Jagtap K, JonesM D , WangL, HattonC, PalescandoloE , GuptaS, MahanS, SougnezC, Onofrio R C, LiefeldT , MacConaillL, Winckler W, ReichM , LiN, Mesirov J P, GabrielS B , GetzG, ArdlieK, ChanV, Myer V E, WeberB L , PorterJ, Warmuth M, FinanP , HarrisJ L, Meyerson M, GolubT R , MorrisseyM P, Sellers W R, SchlegelR , GarrawayL A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391): 603–607
CrossRef
Google scholar
|
[7] |
GarnettM J, Edelman E J, HeidornS J , GreenmanC D, DasturA, LauK W, Greninger P, ThompsonI R , LuoX, SoaresJ, LiuQ, Iorio F, SurdezD , ChenL, MilanoR J, BignellG R, Tam A T, DaviesH , StevensonJ A, Barthorpe S, LutzS R , KogeraF, Lawrence K, McLaren-DouglasA , MitropoulosX, Mironenko T, ThiH , RichardsonL, ZhouW, JewittF, Zhang T, O’BrienP , BoisvertJ L, PriceS, HurW, Yang W, DengX , ButlerA, ChoiH G, ChangJ W, Baselga J, StamenkovicI , EngelmanJ A, SharmaS V, DelattreO, Saez-Rodriguez J, GrayN S , SettlemanJ, Futreal P A, HaberD A , StrattonM R, Ramaswamy S, McDermottU , BenesC H. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012, 483(7391): 570–575
CrossRef
Google scholar
|
[8] |
MullighanC, SuX, ZhangJ, Radtke I, PhillipsL A , MillerC B, MaJ, LiuW, Cheng C, SchulmanB A , HarveyR C, ChenI M, CliffordR J , CarrollW L, ReamanG, BowmanW P, Devidas M, GerhardD S , YangW, Relling M V, ShurtleffS A , CampanaD, Borowitz M J, PuiC H , SmithM, HungerS P, WillmanC L, Downing J R, the Children’s Oncology Group. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. The New England Journal of Medicine, 2009, 360(5): 470–480
CrossRef
Google scholar
|
[9] |
StrattonM R, Campbell P J, FutrealP A . The cancer genome. Nature, 2009, 458(7239): 719–724
CrossRef
Google scholar
|
[10] |
VazquezM, de la Torre V, ValenciaA . Chapter 14: Cancer genome analysis. Plos Computational Biology, 2012, 8(12): e1002824
CrossRef
Google scholar
|
[11] |
VogelsteinB, Papadopoulos N, VelculescuV E , ZhouS B, DiazL A, KinzierK W. Cancer genome landscapes. Science, 2013, 339(6127): 1546–1558
CrossRef
Google scholar
|
[12] |
WheelerD A, WangL H. From human genome to cancer genome: the first decade. Genome Research, 2013, 23(7): 1054–1062
CrossRef
Google scholar
|
[13] |
ZhangJ H, ZhangS H. The discovery of mutated driver pathways in cancer: models and algorithms. 2016, arXiv:1604.01298
|
[14] |
LiuZ Q, ZhangS H. Toward a systematic understanding of cancers: a survey of the pan-cancer study. Frontiers in Genetics, 2014, 5: 194
CrossRef
Google scholar
|
[15] |
YatesL R, Campbell P J. Evolution of the cancer genome. Nature Reviews Genetics, 2012, 13(11): 795–806
CrossRef
Google scholar
|
[16] |
SunY J, YaoJ, NowakN J, Goodison S. Cancer progression modeling using static sample data. Genome Biology, 2014, 15: 440
CrossRef
Google scholar
|
[17] |
WangJ G, Khiabanian H, RossiD , FabbriG, GatteiV, ForconiF, Laurenti L, MarascaR , PoetaG D, FoaR, PasqualucciL , GaidanoG, Rabadan R. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia. Elife, 2014, 3: e02869
CrossRef
Google scholar
|
[18] |
Nik-ZainalS, Van Loo P, WedgeD C , AlexandrovL B, Greenman C D, LauK W , RaineK, JonesD, MarshallJ, Ramakrishna M, ShlienA , CookeS L, HintonJ, MenziesA, Stebbings L A, LeroyC , JiaM, RanceR, MudieL J, Gamble S J, StephensP J , McLarenS, TarpeyP S, PapaemmanuilE , DaviesH R, VarelaI, McBrideD J, Bignell G R, LeungK , ButlerA P, TeagueJ W, MartinS, Jönsson G, MarianiO , BoyaultS, MironP, FatimaA, Langerød A, AparicioS A , TuttA, Sieuwerts A M, BorgA , ThomasG, Salomon A V, RichardsonA L , Børresen-DaleA L , FutrealP A, Stratton M R, CampbellP J , Breast Cancer Working Group of the International Cancer Genome Consortium. The life history of 21 breast cancers. Cell, 2012, 149(5): 994–1007
CrossRef
Google scholar
|
[19] |
LiuZ Q, ZhangX S, ZhangS H. Breast tumor subgroups reveal diverse clinical predictive power. Scientific Reports, 2014, 4: 4002
|
[20] |
HofreeM, ShenJ P, CarterH, Gross A, IdekerT . Network-based stratification of tumor mutations. Nature Methods, 2013, 10(11): 1108–1115
CrossRef
Google scholar
|
[21] |
LuJ, GetzG, MiskaE A, Alvarez-Saavedra E, LambJ , PeckD, Sweet- Cordero A, EbertB L , MarkR H, Ferrando A A, DowningJ R , JacksT, Horvitz H R, GolubT R . MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043): 834–838
CrossRef
Google scholar
|
[22] |
Reis-FilhoJ S, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. The Lancet, 2011, 378(9805): 1812–1823
CrossRef
Google scholar
|
[23] |
KramerR, CohenD. Functional genomics to new drug targets. Nature Reviews Drug Discovery, 2004, 3(11): 965–972
CrossRef
Google scholar
|
[24] |
LambJ, Crawford E D, PeckD , ModellJ W, BlatI C, WrobelM J, Lerner J, BrunetJ P , SubramanianA, RossK N, ReichM, Hieronymus H, WeiG , ArmstrongS A, Haggarty S J, ClemonsP A , WeiR, CarrS A, LanderE S, Golub T R. The Connectivity Map: using geneexpression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795): 1929–1935
CrossRef
Google scholar
|
[25] |
BansalM, YangJ, KaranC, Menden M P, CostelloJ C , TangH, XiaoG, LiY, AllenJ, ZhongR, Chen B, KimM , WangT, HeiserL M, RealubitR, Mattioli M, AlvarezM J , ShenY, NCI-DREAM Community, GallahanD , SingerD, Saez-Rodriguez J, XieY , StolovitzkyG, Califano A, NCI-DREAM Community. A community computational challenge to predict the activity of pairs of compounds. Nature Biotechnology, 2014, 32(12): 1213–1222
CrossRef
Google scholar
|
[26] |
CirielloG, MillerM L, AksoyB A, Senbabaoglu Y, SchultzN , SanderC. Emerging landscape of oncogenic signatures across human cancers. Nature Genetics, 2013, 45(10): 1127–1133
CrossRef
Google scholar
|
[27] |
KandothC, McLellan M D, VandinF , YeK, NiuB F, LuC, XieM C, ZhangQ Y, McMichael J F, WyczalkowskiM A , LeisersonM D, MillerC A, WelchJ S, Walter M J, WendlM C , LeyT J, WilsonR K, RaphaelB J, Ding L. Mutational landscape and significance across 12 major cancer types. Nature, 2013, 502(7471): 333–339
CrossRef
Google scholar
|
[28] |
LawrenceM S, Stojanov P, MermelC H , RobinsonJ T, Garraway L A, GolubT R , MeyersonM, Gabriel S B, LanderE S , GetzG. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014, 505(7484): 495–501
CrossRef
Google scholar
|
[29] |
ZackT I, Schumacher S E, CarterS L , CherniackA D, Saksena G, TabakB , LawrenceM S, ZhsngC Z, WalaJ, Mermel C H, SougnezC , GabrielS B, Hernandez B, ShenH , LairdP W, GetzG, MeyersonM, Beroukhim R. Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45(10): 1134–1140
CrossRef
Google scholar
|
[30] |
DingL, GetzG, WheelerD A, Mardis E R, McLellanM D , CibulskisK, Sougnez C, GreulichH , MuznyD M, MorganM B, FultonL, Fulton R S, ZhangQ Y , WendlM C, Lawrence M S, LarsonD E , ChenK, Dooling D J, SaboA , HawesA C, ShenH, JhangianiS N , LewisL R, HallO, ZhuY M, Mathew T, RenY , YaoJ Q, Scherer S E, ClercK , MetcalfG A, NgB, MilosavljevicA , Gonzalez-GarayM L, Osborne J R, MeyerR , ShiX Q, TangY Z, KoboldtD C, Lin L, AbbottR , MinerT L, PohlC, FewellG, Haipek C, SchmidtH , Dunford-ShoreB H, Kraja A, CrosbyS D , SawyerC S, Vickery T, SanderS , RobinsonJ, Winckler W, BaldwinJ , ChirieacL R, DuttA, FennellT, Hanna M, JohnsonB E , OnofrioR C, ThomasR K, TononG, Weir B A, ZhaoX J , ZiaugraL, ZodyM C, GiordanoT, Orringer M B, RothJ A , SpitzM R, Wistuba I I, OzenbergerB , GoodP J, ChangA C, BeerD G, Watson M A, LadanyiM , BroderickS, Yoshizawa A, TravisW D , PaoW, Province M A, WeinstockG M , VarmusH E, Gabriel S B, LanderE S , GibbsR A, Meyerson M, WilsonR K . Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216): 1069–1075
CrossRef
Google scholar
|
[31] |
SjöblomT, JonesS, WoodL D, Parsons D W, LinJ , BarberT D, Mandelker D, LearyRJ , PtakJ, Silliman N, SzaboS , BuckhaultsP, Farrell C, MeehP , MarkowitzS D, WillisJ, DawsonD, Willson J K, GazdarA F , HartiganJ, WuL, LiuC S, Parmigiani G, ParkB H , BachmanK E, Papadopoulos N, VogelsteinB , KinzlerK W, Velculescu V E. The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314(5797): 268–274
CrossRef
Google scholar
|
[32] |
StamatoyannopoulosJ A, Adzhubei I, ThurmanR E , KryukovG V, MirkinS M, SunyaevS R. Human mutation rate associated with DNA replication timing. Nature Genetics, 2009, 41(4): 393–395
CrossRef
Google scholar
|
[33] |
ChenC L, Rappailles A, DuquenneL , HuvetM, Guilbaud G, FarinelliL , AuditB, d’Aubenton-Carafa Y, ArneodoA , HyrienO, Thermes C. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Research, 2010, 20(4): 447–457
CrossRef
Google scholar
|
[34] |
DeesN D, ZhangQ Y, KandothC, Wendl M C, SchierdingW , KoboldtD C, MooneyT B, CallawayM B , DoolingD, MardisE R, WilsonR K, Ding L. MuSiC: identifying mutational significance in cancer genomes. Genome Research, 2012, 22(8): 1589–1598
CrossRef
Google scholar
|
[35] |
LawrenceM S, Stojanov P, PolakP , KryukovG V, Cibulskis K, SivachenkoA , CarterS L, Stewart C, MermelC H , RobertsS A, KiezunA, HammermanP S , McKennaA, DrierY, ZouL, Ramos A H, PughT J , StranskyN, HelmanE, KimJ, Sougnez C, AmbrogioL , NickersonE, Shefler E, CortésM L , AuclairD, Saksena G, VoetD , NobleM, DiCaraD, LinP, Lichtenstein L, HeimanD I , FennellT, Imielinski M, HernandezB , HodisE, BacaS, DulakA M, Lohr J, LandauD A , WuC J, Melendez-Zajgla J, Hidalgo-MirandaA , KorenA, McCarroll S A, MoraJ , LeeR S, Crompton B, OnofrioR , ParkinM, Winckler W, ArdlieK , GabrielS B, Roberts CW, BiegelJ A , StegmaierK, BassA J, GarrawayL A , MeyersonM, GolubT R, GordeninD A , SunyaevS, LanderE S, GetzG. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499(7457): 214–218
CrossRef
Google scholar
|
[36] |
YounA, SimonR. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics, 2011, 27(2): 175–181
CrossRef
Google scholar
|
[37] |
TamboreroD, Gonzalez-Perez A, Lopez-BigasN . Oncodriveclust: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics, 2013, 29(18): 2238–2244
CrossRef
Google scholar
|
[38] |
KorthauerK D, Kendziorski C. MADGiC: a model-based approach for identifying driver genes in cancer. Bioinformatics, 2015, 31(10): 1526–1535
CrossRef
Google scholar
|
[39] |
WuG M, FengX, SteinL. A human functional protein interaction network and its application to cancer data analysis. Genome Biology, 2010, 11(5): R53
CrossRef
Google scholar
|
[40] |
VandinF, UpfalE, RaphaelB J. Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology, 2011, 18(3): 507–522
CrossRef
Google scholar
|
[41] |
LeisersonM D M, VandinF, WuH T, Dobson J R, EldridgeJ V , ThomasJ L, Papoutsaki A, KimY , NiuB F, McLellan M, LawrenceM S , Gonzalez-PerezA, Tamborero D, ChengY W , RyslikG A, Lopez-Bigas N, GetzG , DingL, Raphael B J. Pan-cancer network analysisidentifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 2015, 47(2): 106–114
CrossRef
Google scholar
|
[42] |
CeramiE, DemirE, SchultzN, Taylor B S, SanderC . Automated network analysis identifies core pathways in glioblastoma. Plos One, 2010, 5(2): e8918
CrossRef
Google scholar
|
[43] |
YeangC H, McCormick F, LevineA . Combinatorial patterns of somatic gene mutations in cancer. The FASEB Journal, 2008, 22(8): 2605–2622
CrossRef
Google scholar
|
[44] |
VandinF, UpfalE, RaphaelB J. De novo discovery of mutated driver pathways in cancer. Genome Research, 2012, 22(2): 375–385
CrossRef
Google scholar
|
[45] |
ZhaoJ F, ZhangS H, WuL Y, Zhang X S. Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics, 2012, 28(22): 2940–2947
CrossRef
Google scholar
|
[46] |
ZhangJ F, ZhangS H, WangY, Zhang X S. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. BMC Systems Biology, 2013, 7(Suppl 2): S4
CrossRef
Google scholar
|
[47] |
ZhangJ H, WuL Y, ZhangX S, Zhang S H. Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics, 2014, 15: 271
CrossRef
Google scholar
|
[48] |
LeisersonM D, BlokhD, SharanR, Raphael B J. Simultaneous identification of multiple driver pathways in cancer. Plos Computational Biology, 2013, 9(5): e1003054
CrossRef
Google scholar
|
[49] |
AndersonK, LutzC, van DelftF W , BatemanC M, GuoY, ColmanS M, Kempski H, MoormanA V , TitleyI, Swansbury J, KearneyL , EnverT, Greaves M. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 2011, 469(7330): 356–361
CrossRef
Google scholar
|
[50] |
CampbellP J, Yachida S, MudieL J , StephensP J, Pleasance E D, StebbingsL A , MorsbergerL A, Latimer C, McLarenS , LinM L, McBride D J, VarelaI , Nik-ZainalS A, LeroyC, JiaM, Menzies A, ButlerA P , TeagueJ W, Griffin C A, BurtonJ , SwerdlowH, QuailM A, StrattonM R , Iacobuzio-DonahueC, Futreal P A. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 2010, 467(7319): 1109–1113
CrossRef
Google scholar
|
[51] |
WalterM J, ShenD, DingL, Shao J, KoboldtD C , ChenK, LarsonD E, McLellanM D , DoolingD, AbbottR, FultonR, Magrini V, SchmidtH , Kalicki-VeizerJ, O’Laughlin M, FanX , GrillotM, Witowski S, HeathS , FraterJ L, EadesW, TomassonM, Westervelt P, DiPersioJ F , LinkD C, MardisE R, LeyT J, Wilson R K, GraubertT A . Clonal architecture of secondary acute myeloid leukemia. The New England Journal of Medicine, 2012, 366(12): 1090–1098
CrossRef
Google scholar
|
[52] |
WuX C, Northcott P A, DubucA , DupuyA J, ShihD J, WittH, Croul S, BouffetE , FultsD W, Eberhart C G, GarziaL , Van MeterT, ZagzagD, JabadoN, Schwartzentruber J, MajewskiJ , ScheetzT E, Pfister S M, KorshunovA , LiX N, Scherer SW, ChoY J , AkagiK, MacDonald T J, KosterJ , McCabeM G, SarverA L, CollinsV P, Weiss W A, LargaespadaD A , CollierL S, TaylorM D. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482(7386): 529–533
CrossRef
Google scholar
|
[53] |
QiaoY, Quinlan A R, JazaeriA A , VerhaakR G, Wheeler D A, MarthG T . SubcloneSeeker: a computational framework for reconstructing tumor clone structure for cancer variant interpretation and prioritization. Genome Biology, 2014, 15(8): 443
CrossRef
Google scholar
|
[54] |
RothA, Khattra J, YapD , WanA, LaksE, BieleJ, Ha G, AparicioS , Bouchard-CôtéA , ShahS P. PyClone: statistical inference of clonal population structure in cancer. Nature Methods, 2014, 11(4): 396–398
CrossRef
Google scholar
|
[55] |
XiaH, LiuY N, WangM H, Li A. Identification of genomic aberrations in cancer subclones from heterogeneous tumor samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(3): 679–685
CrossRef
Google scholar
|
[56] |
FischerA, Vázquez-García I, IllingworthC J , MustonenV. Highdefinition reconstruction of clonal composition in cancer. Cell Reports, 2014, 7(5): 1740–1752
CrossRef
Google scholar
|
[57] |
LeeJ, Mueller P, SenguptaS , GulukotaK, JiY. Bayesian inference for tumor subclones accounting for sequencing and structural variant. 2014, arXiv:1409.7158
|
[58] |
NavinN, Kendall J, TrogeJ , AndrewsP, Rodgers L, McIndooJ , CookK, Stepansky A, LevyD , EspositoD, Muthuswamy L, KrasnitzA , McCombieW R, HicksJ, WiglerM. Tumour evolution inferred by single-cell sequencing. Nature, 2011, 472(7341): 90–94
CrossRef
Google scholar
|
[59] |
HouY, SongL T, ZhuP, Zhang B, TaoY , XuX, LiF Q, WuK, LiangJ, ShaoD, Wu H J, YeX F , YeC, WuR H, JianM, Chen Y, XieW , ZhangR R, ChenL, LiuX, Yao X T, ZhengH C , YuC, LiQ B, GongZ L, Mao M, YangX , YangL, LiJ X, WangW, Lu Z H, GuN , LaurieG, BolundL, KristiansenK , WangJ, YangH M, LiY R, Zhang X Q, WangJ . Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 2012, 148(5): 873–885
CrossRef
Google scholar
|
[60] |
XuX, HouY, YinX Y, Bao L, TangA F , SongL T, LiF Q, TsangS, Wu K, WuH J , HeW M, ZengL, XingM J, Wu R H, JiangH , LiuX, CaoD D, GuoG W, Hu X D, GuiY T , LiZ, XieW Y, SunX J, Shi M, CaiZ M , WangB, ZhongM M, LiJ X, Lu Z H, GuN , ZhangX Q, Goodman L, BolundL , WangJ, YangH M, KristiansenK , DeanM, LiY R, WangJ. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 2012, 148(5): 886–895
CrossRef
Google scholar
|
[61] |
MooreM J. From birth to death: the complex lives of eukaryotic mRNAs. Science, 2005, 309(5740): 1514–1518
CrossRef
Google scholar
|
[62] |
ChuangH, HofreeM, IdekerT. A decade of systems biology. Annual Reviews Cell and Developmental Biology, 2010, 26: 721–744
CrossRef
Google scholar
|
[63] |
OrphanidesG, Reinberg D. A unified theory of gene expression. Cell, 2002, 108(4): 439–451
CrossRef
Google scholar
|
[64] |
JaenischR, BirdA. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 2003, 33: 245–254
CrossRef
Google scholar
|
[65] |
ZhangW, ZhuJ, SchadtE E, Liu J S. A bayesian partition method for detecting pleiotropic and epistatic eQTL modules. Plos Computational Biology, 2010, 6(1): e1000642
CrossRef
Google scholar
|
[66] |
MankooP K, ShenR, SchultzN, Levine D A, SanderC . Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. Plos One, 2011, 6(11): e24709
CrossRef
Google scholar
|
[67] |
KutalikZ, Beckmann J S, BergmannS . A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nature Biotechnology, 2008, 26(5): 531–539
CrossRef
Google scholar
|
[68] |
ChenJ Y, ZhangS H. Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics, 2016, 32(11): 1724–1732
CrossRef
Google scholar
|
[69] |
WittenD M, Tibshirani R J. Extensions of sparse canonical correlation analysis with applications to genomic data. Statistical Applications in Genetics and Molecular Biology, 2009, 8(1): 1–27
CrossRef
Google scholar
|
[70] |
ChenK, ChanK S, StensethN C . Reduced rank stochastic regression with a sparse singular value decomposition. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012, 74(2): 203–221
CrossRef
Google scholar
|
[71] |
MaX, XiaoL, WongW H. Learning regulatory programs by threshold SVD regression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 15675–15680
CrossRef
Google scholar
|
[72] |
ZhangS H, LiuC C, LiW Y, Shen H, LairdP W , ZhouX J. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research, 2012, 40(19): 9379–9391
CrossRef
Google scholar
|
[73] |
ZhangS H, LiQ J, LiuJ, Zhou X J. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 2011, 27(13): 401–409
CrossRef
Google scholar
|
[74] |
ZitnikM, ZupanB. Data fusion by matrix factorization. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(1): 41–53
CrossRef
Google scholar
|
[75] |
LiW Y, ZhangS H, LiuC C, Zhou X J. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics, 2012, 28(19): 2458–2466
CrossRef
Google scholar
|
[76] |
KonstantinopoulosP A, Spentzos D, CannistraS A . Gene-expression profiling in epithelial ovarian cancer. Nature Clinical Practice Oncology, 2008, 5(10): 577–587
CrossRef
Google scholar
|
[77] |
CareyL A, PerouC M, LivasyC A, Dressler L G, CowanD , ConwayK, KaracaG, TroesterM A , TseC K, Edmiston S, DemingS L , GeradtsJ, CheangM C, NielsenT O, Moorman P G, EarpH S , MillikanR C. Race, breast cancer subtypes, and survival in the carolina breast cancer study. The Journal of the American Medical Association, 2006, 295(21): 2492–2502
CrossRef
Google scholar
|
[78] |
KonstantinopoulosP A, Spentzos D, KarlanB Y , TaniguchiT, Fountzilas E, FrancoeurN , LevineD A, Cannistra S A. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. Journal of Clinical Oncology, 2010, 28(22): 3555–3561
CrossRef
Google scholar
|
[79] |
VerhaakR G, Hoadley K A, PurdomE , WangV, QiY, WilkersonM D , MillerC R, DingL, GolubT, Mesirov J P, AlexeG , LawrenceM, O’Kelly M, TamayoP , WeirB A, Gabriel S, WincklerW , GuptaS, Jakkula L, FeilerH S , HodgsonJ G, JamesC D, SarkariaJ N , BrennanC, KahnA, SpellmanP T , WilsonR K, SpeedT P, GrayJ W, Meyerson M, GetzG , PerouC M, HayesD N, Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1): 98–110
CrossRef
Google scholar
|
[80] |
LiuZ Q, ZhangS H. Tumor characterization and stratification by integrated molecular profiles reveals essential pan-cancer features. BMC Genomics, 2015, 16: 503
CrossRef
Google scholar
|
[81] |
CurtisC, ShahS P, ChinS F, Turashvili G, RuedaO M , DunningM J, SpeedD, LynchA G, Samarajiwa S, YuanY , GräfS, HaG, HaffariG, Bashashati A, RussellR , McKinneyS; METABRIC Group, LangerødA , GreenA, Provenzano E, WishartG , PinderS, WatsonP, MarkowetzF, Murphy L, EllisI , PurushothamA, Børresen-Dale A L, BrentonJ D , TavaréS, CaldasC, AparicioS. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403): 346–352
|
[82] |
ParkerJ S, Mullins M, CheangM C , LeungS, VoducD, VickeryT, Davies S, FauronC , HeX, HuZ, QuackenbushJ F , StijlemanI J, Palazzo J, MarronJ S , NobelA B, MardisE, NielsenT O, Ellis M J, PerouC M , BernardP S. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology, 2009, 27(8): 1160–1167
CrossRef
Google scholar
|
[83] |
ShoemakerR H. The NCI60 human tumor cell line screen. Nature Reviews Cancer, 2006, 6: 813–823
CrossRef
Google scholar
|
[84] |
EduatiF, Mangravite L M, WangT , TangH, BareJ C, HuangR, Norman T, KellenM , MendenM P, YangJ C, ZhanX W, Zhong R, XiaoG H , XiaM H, AbdoN, KosykO, NIEHS-NCATS-UNC DREAM Toxicogenetics Collaboration, FriendS, DearryA, SimeonovA, Tice R R, RusynI , WrightF A, Stolovitzky G, XieY , Saez-RodriguezJ. Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology, 2015, 33(9): 933–940
CrossRef
Google scholar
|
[85] |
ZhaoJ, ZhangX S, ZhangS H. Predicting cooperative drug effects through the quantitative cellular profiling of response to individual drugs. CPT: Pharmacometrics & Systems Pharmacology, 2014, 3(2): 1–7
CrossRef
Google scholar
|
[86] |
The Cancer Genome Atlas Research Network, WeinsteinJ N , CollissonE A, MillsG B, ShawK R, Ozenberger B A, EllrottK , ShmulevichI, SanderC, StuartJ M. The cancer genome atlas pan-cancer analysis project. Nature Genetics, 2013, 45(10): 1113–1120
|
[87] |
ReimandJ, WagihO, BaderG D.The mutational landscape of phosphorylation signaling in cancer. Scientific Reports, 2013, 3: 2651
CrossRef
Google scholar
|
[88] |
WitteT, PlassC, GerhauserC. Pan-cancer patterns of DNA methylation. Genome Medicine, 2014, 6(8): 66
CrossRef
Google scholar
|
[89] |
GevaertO, Tibshirani R, PlevritisS K . Pancancer analysis of DNA methylation-driven genes using MethylMix. Genome Biology, 2015, 16: 17
CrossRef
Google scholar
|
[90] |
YangX F, ShaoX J, GaoL, Zhang S H. Systematic DNA methylation analysis of multiple cell lines reveals common and specific patterns within and across tissues of origin. Human Molecular Genetics, 2015, 24(15): 4374–4384
CrossRef
Google scholar
|
[91] |
YangX F, ShaoX J, GaoL, Zhang S H. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Briefings in Bioinformatics, 2016, doi:10.1093/bib/bbw063
CrossRef
Google scholar
|
/
〈 | 〉 |