Integrative cancer genomics: models, algorithms and analysis

Jinyu CHEN, Shihua ZHANG

PDF(441 KB)
PDF(441 KB)
Front. Comput. Sci. ›› 2017, Vol. 11 ›› Issue (3) : 392-406. DOI: 10.1007/s11704-016-5568-5
REVIEW ARTICLE

Integrative cancer genomics: models, algorithms and analysis

Author information +
History +

Abstract

In the past decade, the remarkable development of high-throughput sequencing technology accelerates the generation of large amount of multiple dimensional data such as genomic, epigenomic, transcriptomic and proteomic data. The comprehensive data make it possible to understand the underlying mechanisms of biology and disease such as cancer systematically. It also provides great challenges for computational cancer genomics due to the complexity, scale and noise of data. In this article, we aim to review the recent developments and progresses of computational models, algorithms and analysis of complex data in cancer genomics. These topics of this paper include the identification of driver mutations, the genetic heterogeneity analysis, genomic markers discovery of drug response, pan-cancer scale analysis and so on.

Keywords

cancer genomics / model / algorithm / data integration / bioinformatics / computational biology

Cite this article

Download citation ▾
Jinyu CHEN, Shihua ZHANG. Integrative cancer genomics: models, algorithms and analysis. Front. Comput. Sci., 2017, 11(3): 392‒406 https://doi.org/10.1007/s11704-016-5568-5

References

[1]
HanahanD, Weinberg R A. The hallmarks of cancer. Cell, 2000, 100(1): 57–70
CrossRef Google scholar
[2]
HanahanD, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674
CrossRef Google scholar
[3]
The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216): 1061–1068
CrossRef Google scholar
[4]
The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011, 474(7353): 609–615
CrossRef Google scholar
[5]
The International Cancer Genome Consortium. International network of cancer genome projects. Nature, 2010, 464(7291): 993–998
CrossRef Google scholar
[6]
BarretinaJ, Caponigro G, StranskyN , VenkatesanK, Margolin A A, KimS , WilsonC J, Lehár J, KryukovG V , SonkinD, ReddyA, LiuM, Murray L, BergerM F , MonahanJ E, MoraisP, MeltzerJ, Korejwa A, Jané-ValbuenaJ, MapaF A, Thibault J, Bric-FurlongE , RamanP, Shipway A, EngelsI H , ChengJ, YuG K, YuJ, AspesiP Jr, de SilvaM, Jagtap K, JonesM D , WangL, HattonC, PalescandoloE , GuptaS, MahanS, SougnezC, Onofrio R C, LiefeldT , MacConaillL, Winckler W, ReichM , LiN, Mesirov J P, GabrielS B , GetzG, ArdlieK, ChanV, Myer V E, WeberB L , PorterJ, Warmuth M, FinanP , HarrisJ L, Meyerson M, GolubT R , MorrisseyM P, Sellers W R, SchlegelR , GarrawayL A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483(7391): 603–607
CrossRef Google scholar
[7]
GarnettM J, Edelman E J, HeidornS J , GreenmanC D, DasturA, LauK W, Greninger P, ThompsonI R , LuoX, SoaresJ, LiuQ, Iorio F, SurdezD , ChenL, MilanoR J, BignellG R, Tam A T, DaviesH , StevensonJ A, Barthorpe S, LutzS R , KogeraF, Lawrence K, McLaren-DouglasA , MitropoulosX, Mironenko T, ThiH , RichardsonL, ZhouW, JewittF, Zhang T, O’BrienP , BoisvertJ L, PriceS, HurW, Yang W, DengX , ButlerA, ChoiH G, ChangJ W, Baselga J, StamenkovicI , EngelmanJ A, SharmaS V, DelattreO, Saez-Rodriguez J, GrayN S , SettlemanJ, Futreal P A, HaberD A , StrattonM R, Ramaswamy S, McDermottU , BenesC H. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012, 483(7391): 570–575
CrossRef Google scholar
[8]
MullighanC, SuX, ZhangJ, Radtke I, PhillipsL A , MillerC B, MaJ, LiuW, Cheng C, SchulmanB A , HarveyR C, ChenI M, CliffordR J , CarrollW L, ReamanG, BowmanW P, Devidas M, GerhardD S , YangW, Relling M V, ShurtleffS A , CampanaD, Borowitz M J, PuiC H , SmithM, HungerS P, WillmanC L, Downing J R, the Children’s Oncology Group. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. The New England Journal of Medicine, 2009, 360(5): 470–480
CrossRef Google scholar
[9]
StrattonM R, Campbell P J, FutrealP A . The cancer genome. Nature, 2009, 458(7239): 719–724
CrossRef Google scholar
[10]
VazquezM, de la Torre V, ValenciaA . Chapter 14: Cancer genome analysis. Plos Computational Biology, 2012, 8(12): e1002824
CrossRef Google scholar
[11]
VogelsteinB, Papadopoulos N, VelculescuV E , ZhouS B, DiazL A, KinzierK W. Cancer genome landscapes. Science, 2013, 339(6127): 1546–1558
CrossRef Google scholar
[12]
WheelerD A, WangL H. From human genome to cancer genome: the first decade. Genome Research, 2013, 23(7): 1054–1062
CrossRef Google scholar
[13]
ZhangJ H, ZhangS H. The discovery of mutated driver pathways in cancer: models and algorithms. 2016, arXiv:1604.01298
[14]
LiuZ Q, ZhangS H. Toward a systematic understanding of cancers: a survey of the pan-cancer study. Frontiers in Genetics, 2014, 5: 194
CrossRef Google scholar
[15]
YatesL R, Campbell P J. Evolution of the cancer genome. Nature Reviews Genetics, 2012, 13(11): 795–806
CrossRef Google scholar
[16]
SunY J, YaoJ, NowakN J, Goodison S. Cancer progression modeling using static sample data. Genome Biology, 2014, 15: 440
CrossRef Google scholar
[17]
WangJ G, Khiabanian H, RossiD , FabbriG, GatteiV, ForconiF, Laurenti L, MarascaR , PoetaG D, FoaR, PasqualucciL , GaidanoG, Rabadan R. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia. Elife, 2014, 3: e02869
CrossRef Google scholar
[18]
Nik-ZainalS, Van Loo P, WedgeD C , AlexandrovL B, Greenman C D, LauK W , RaineK, JonesD, MarshallJ, Ramakrishna M, ShlienA , CookeS L, HintonJ, MenziesA, Stebbings L A, LeroyC , JiaM, RanceR, MudieL J, Gamble S J, StephensP J , McLarenS, TarpeyP S, PapaemmanuilE , DaviesH R, VarelaI, McBrideD J, Bignell G R, LeungK , ButlerA P, TeagueJ W, MartinS, Jönsson G, MarianiO , BoyaultS, MironP, FatimaA, Langerød A, AparicioS A , TuttA, Sieuwerts A M, BorgA , ThomasG, Salomon A V, RichardsonA L , Børresen-DaleA L , FutrealP A, Stratton M R, CampbellP J , Breast Cancer Working Group of the International Cancer Genome Consortium. The life history of 21 breast cancers. Cell, 2012, 149(5): 994–1007
CrossRef Google scholar
[19]
LiuZ Q, ZhangX S, ZhangS H. Breast tumor subgroups reveal diverse clinical predictive power. Scientific Reports, 2014, 4: 4002
[20]
HofreeM, ShenJ P, CarterH, Gross A, IdekerT . Network-based stratification of tumor mutations. Nature Methods, 2013, 10(11): 1108–1115
CrossRef Google scholar
[21]
LuJ, GetzG, MiskaE A, Alvarez-Saavedra E, LambJ , PeckD, Sweet- Cordero A, EbertB L , MarkR H, Ferrando A A, DowningJ R , JacksT, Horvitz H R, GolubT R . MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043): 834–838
CrossRef Google scholar
[22]
Reis-FilhoJ S, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. The Lancet, 2011, 378(9805): 1812–1823
CrossRef Google scholar
[23]
KramerR, CohenD. Functional genomics to new drug targets. Nature Reviews Drug Discovery, 2004, 3(11): 965–972
CrossRef Google scholar
[24]
LambJ, Crawford E D, PeckD , ModellJ W, BlatI C, WrobelM J, Lerner J, BrunetJ P , SubramanianA, RossK N, ReichM, Hieronymus H, WeiG , ArmstrongS A, Haggarty S J, ClemonsP A , WeiR, CarrS A, LanderE S, Golub T R. The Connectivity Map: using geneexpression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795): 1929–1935
CrossRef Google scholar
[25]
BansalM, YangJ, KaranC, Menden M P, CostelloJ C , TangH, XiaoG, LiY, AllenJ, ZhongR, Chen B, KimM , WangT, HeiserL M, RealubitR, Mattioli M, AlvarezM J , ShenY, NCI-DREAM Community, GallahanD , SingerD, Saez-Rodriguez J, XieY , StolovitzkyG, Califano A, NCI-DREAM Community. A community computational challenge to predict the activity of pairs of compounds. Nature Biotechnology, 2014, 32(12): 1213–1222
CrossRef Google scholar
[26]
CirielloG, MillerM L, AksoyB A, Senbabaoglu Y, SchultzN , SanderC. Emerging landscape of oncogenic signatures across human cancers. Nature Genetics, 2013, 45(10): 1127–1133
CrossRef Google scholar
[27]
KandothC, McLellan M D, VandinF , YeK, NiuB F, LuC, XieM C, ZhangQ Y, McMichael J F, WyczalkowskiM A , LeisersonM D, MillerC A, WelchJ S, Walter M J, WendlM C , LeyT J, WilsonR K, RaphaelB J, Ding L. Mutational landscape and significance across 12 major cancer types. Nature, 2013, 502(7471): 333–339
CrossRef Google scholar
[28]
LawrenceM S, Stojanov P, MermelC H , RobinsonJ T, Garraway L A, GolubT R , MeyersonM, Gabriel S B, LanderE S , GetzG. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 2014, 505(7484): 495–501
CrossRef Google scholar
[29]
ZackT I, Schumacher S E, CarterS L , CherniackA D, Saksena G, TabakB , LawrenceM S, ZhsngC Z, WalaJ, Mermel C H, SougnezC , GabrielS B, Hernandez B, ShenH , LairdP W, GetzG, MeyersonM, Beroukhim R. Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 2013, 45(10): 1134–1140
CrossRef Google scholar
[30]
DingL, GetzG, WheelerD A, Mardis E R, McLellanM D , CibulskisK, Sougnez C, GreulichH , MuznyD M, MorganM B, FultonL, Fulton R S, ZhangQ Y , WendlM C, Lawrence M S, LarsonD E , ChenK, Dooling D J, SaboA , HawesA C, ShenH, JhangianiS N , LewisL R, HallO, ZhuY M, Mathew T, RenY , YaoJ Q, Scherer S E, ClercK , MetcalfG A, NgB, MilosavljevicA , Gonzalez-GarayM L, Osborne J R, MeyerR , ShiX Q, TangY Z, KoboldtD C, Lin L, AbbottR , MinerT L, PohlC, FewellG, Haipek C, SchmidtH , Dunford-ShoreB H, Kraja A, CrosbyS D , SawyerC S, Vickery T, SanderS , RobinsonJ, Winckler W, BaldwinJ , ChirieacL R, DuttA, FennellT, Hanna M, JohnsonB E , OnofrioR C, ThomasR K, TononG, Weir B A, ZhaoX J , ZiaugraL, ZodyM C, GiordanoT, Orringer M B, RothJ A , SpitzM R, Wistuba I I, OzenbergerB , GoodP J, ChangA C, BeerD G, Watson M A, LadanyiM , BroderickS, Yoshizawa A, TravisW D , PaoW, Province M A, WeinstockG M , VarmusH E, Gabriel S B, LanderE S , GibbsR A, Meyerson M, WilsonR K . Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216): 1069–1075
CrossRef Google scholar
[31]
SjöblomT, JonesS, WoodL D, Parsons D W, LinJ , BarberT D, Mandelker D, LearyRJ , PtakJ, Silliman N, SzaboS , BuckhaultsP, Farrell C, MeehP , MarkowitzS D, WillisJ, DawsonD, Willson J K, GazdarA F , HartiganJ, WuL, LiuC S, Parmigiani G, ParkB H , BachmanK E, Papadopoulos N, VogelsteinB , KinzlerK W, Velculescu V E. The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314(5797): 268–274
CrossRef Google scholar
[32]
StamatoyannopoulosJ A, Adzhubei I, ThurmanR E , KryukovG V, MirkinS M, SunyaevS R. Human mutation rate associated with DNA replication timing. Nature Genetics, 2009, 41(4): 393–395
CrossRef Google scholar
[33]
ChenC L, Rappailles A, DuquenneL , HuvetM, Guilbaud G, FarinelliL , AuditB, d’Aubenton-Carafa Y, ArneodoA , HyrienO, Thermes C. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Research, 2010, 20(4): 447–457
CrossRef Google scholar
[34]
DeesN D, ZhangQ Y, KandothC, Wendl M C, SchierdingW , KoboldtD C, MooneyT B, CallawayM B , DoolingD, MardisE R, WilsonR K, Ding L. MuSiC: identifying mutational significance in cancer genomes. Genome Research, 2012, 22(8): 1589–1598
CrossRef Google scholar
[35]
LawrenceM S, Stojanov P, PolakP , KryukovG V, Cibulskis K, SivachenkoA , CarterS L, Stewart C, MermelC H , RobertsS A, KiezunA, HammermanP S , McKennaA, DrierY, ZouL, Ramos A H, PughT J , StranskyN, HelmanE, KimJ, Sougnez C, AmbrogioL , NickersonE, Shefler E, CortésM L , AuclairD, Saksena G, VoetD , NobleM, DiCaraD, LinP, Lichtenstein L, HeimanD I , FennellT, Imielinski M, HernandezB , HodisE, BacaS, DulakA M, Lohr J, LandauD A , WuC J, Melendez-Zajgla J, Hidalgo-MirandaA , KorenA, McCarroll S A, MoraJ , LeeR S, Crompton B, OnofrioR , ParkinM, Winckler W, ArdlieK , GabrielS B, Roberts CW, BiegelJ A , StegmaierK, BassA J, GarrawayL A , MeyersonM, GolubT R, GordeninD A , SunyaevS, LanderE S, GetzG. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499(7457): 214–218
CrossRef Google scholar
[36]
YounA, SimonR. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics, 2011, 27(2): 175–181
CrossRef Google scholar
[37]
TamboreroD, Gonzalez-Perez A, Lopez-BigasN . Oncodriveclust: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics, 2013, 29(18): 2238–2244
CrossRef Google scholar
[38]
KorthauerK D, Kendziorski C. MADGiC: a model-based approach for identifying driver genes in cancer. Bioinformatics, 2015, 31(10): 1526–1535
CrossRef Google scholar
[39]
WuG M, FengX, SteinL. A human functional protein interaction network and its application to cancer data analysis. Genome Biology, 2010, 11(5): R53
CrossRef Google scholar
[40]
VandinF, UpfalE, RaphaelB J. Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology, 2011, 18(3): 507–522
CrossRef Google scholar
[41]
LeisersonM D M, VandinF, WuH T, Dobson J R, EldridgeJ V , ThomasJ L, Papoutsaki A, KimY , NiuB F, McLellan M, LawrenceM S , Gonzalez-PerezA, Tamborero D, ChengY W , RyslikG A, Lopez-Bigas N, GetzG , DingL, Raphael B J. Pan-cancer network analysisidentifies combinations of rare somatic mutations across pathways and protein complexes. Nature Genetics, 2015, 47(2): 106–114
CrossRef Google scholar
[42]
CeramiE, DemirE, SchultzN, Taylor B S, SanderC . Automated network analysis identifies core pathways in glioblastoma. Plos One, 2010, 5(2): e8918
CrossRef Google scholar
[43]
YeangC H, McCormick F, LevineA . Combinatorial patterns of somatic gene mutations in cancer. The FASEB Journal, 2008, 22(8): 2605–2622
CrossRef Google scholar
[44]
VandinF, UpfalE, RaphaelB J. De novo discovery of mutated driver pathways in cancer. Genome Research, 2012, 22(2): 375–385
CrossRef Google scholar
[45]
ZhaoJ F, ZhangS H, WuL Y, Zhang X S. Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics, 2012, 28(22): 2940–2947
CrossRef Google scholar
[46]
ZhangJ F, ZhangS H, WangY, Zhang X S. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. BMC Systems Biology, 2013, 7(Suppl 2): S4
CrossRef Google scholar
[47]
ZhangJ H, WuL Y, ZhangX S, Zhang S H. Discovery of co-occurring driver pathways in cancer. BMC Bioinformatics, 2014, 15: 271
CrossRef Google scholar
[48]
LeisersonM D, BlokhD, SharanR, Raphael B J. Simultaneous identification of multiple driver pathways in cancer. Plos Computational Biology, 2013, 9(5): e1003054
CrossRef Google scholar
[49]
AndersonK, LutzC, van DelftF W , BatemanC M, GuoY, ColmanS M, Kempski H, MoormanA V , TitleyI, Swansbury J, KearneyL , EnverT, Greaves M. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature, 2011, 469(7330): 356–361
CrossRef Google scholar
[50]
CampbellP J, Yachida S, MudieL J , StephensP J, Pleasance E D, StebbingsL A , MorsbergerL A, Latimer C, McLarenS , LinM L, McBride D J, VarelaI , Nik-ZainalS A, LeroyC, JiaM, Menzies A, ButlerA P , TeagueJ W, Griffin C A, BurtonJ , SwerdlowH, QuailM A, StrattonM R , Iacobuzio-DonahueC, Futreal P A. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 2010, 467(7319): 1109–1113
CrossRef Google scholar
[51]
WalterM J, ShenD, DingL, Shao J, KoboldtD C , ChenK, LarsonD E, McLellanM D , DoolingD, AbbottR, FultonR, Magrini V, SchmidtH , Kalicki-VeizerJ, O’Laughlin M, FanX , GrillotM, Witowski S, HeathS , FraterJ L, EadesW, TomassonM, Westervelt P, DiPersioJ F , LinkD C, MardisE R, LeyT J, Wilson R K, GraubertT A . Clonal architecture of secondary acute myeloid leukemia. The New England Journal of Medicine, 2012, 366(12): 1090–1098
CrossRef Google scholar
[52]
WuX C, Northcott P A, DubucA , DupuyA J, ShihD J, WittH, Croul S, BouffetE , FultsD W, Eberhart C G, GarziaL , Van MeterT, ZagzagD, JabadoN, Schwartzentruber J, MajewskiJ , ScheetzT E, Pfister S M, KorshunovA , LiX N, Scherer SW, ChoY J , AkagiK, MacDonald T J, KosterJ , McCabeM G, SarverA L, CollinsV P, Weiss W A, LargaespadaD A , CollierL S, TaylorM D. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482(7386): 529–533
CrossRef Google scholar
[53]
QiaoY, Quinlan A R, JazaeriA A , VerhaakR G, Wheeler D A, MarthG T . SubcloneSeeker: a computational framework for reconstructing tumor clone structure for cancer variant interpretation and prioritization. Genome Biology, 2014, 15(8): 443
CrossRef Google scholar
[54]
RothA, Khattra J, YapD , WanA, LaksE, BieleJ, Ha G, AparicioS , Bouchard-CôtéA , ShahS P. PyClone: statistical inference of clonal population structure in cancer. Nature Methods, 2014, 11(4): 396–398
CrossRef Google scholar
[55]
XiaH, LiuY N, WangM H, Li A. Identification of genomic aberrations in cancer subclones from heterogeneous tumor samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(3): 679–685
CrossRef Google scholar
[56]
FischerA, Vázquez-García I, IllingworthC J , MustonenV. Highdefinition reconstruction of clonal composition in cancer. Cell Reports, 2014, 7(5): 1740–1752
CrossRef Google scholar
[57]
LeeJ, Mueller P, SenguptaS , GulukotaK, JiY. Bayesian inference for tumor subclones accounting for sequencing and structural variant. 2014, arXiv:1409.7158
[58]
NavinN, Kendall J, TrogeJ , AndrewsP, Rodgers L, McIndooJ , CookK, Stepansky A, LevyD , EspositoD, Muthuswamy L, KrasnitzA , McCombieW R, HicksJ, WiglerM. Tumour evolution inferred by single-cell sequencing. Nature, 2011, 472(7341): 90–94
CrossRef Google scholar
[59]
HouY, SongL T, ZhuP, Zhang B, TaoY , XuX, LiF Q, WuK, LiangJ, ShaoD, Wu H J, YeX F , YeC, WuR H, JianM, Chen Y, XieW , ZhangR R, ChenL, LiuX, Yao X T, ZhengH C , YuC, LiQ B, GongZ L, Mao M, YangX , YangL, LiJ X, WangW, Lu Z H, GuN , LaurieG, BolundL, KristiansenK , WangJ, YangH M, LiY R, Zhang X Q, WangJ . Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 2012, 148(5): 873–885
CrossRef Google scholar
[60]
XuX, HouY, YinX Y, Bao L, TangA F , SongL T, LiF Q, TsangS, Wu K, WuH J , HeW M, ZengL, XingM J, Wu R H, JiangH , LiuX, CaoD D, GuoG W, Hu X D, GuiY T , LiZ, XieW Y, SunX J, Shi M, CaiZ M , WangB, ZhongM M, LiJ X, Lu Z H, GuN , ZhangX Q, Goodman L, BolundL , WangJ, YangH M, KristiansenK , DeanM, LiY R, WangJ. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 2012, 148(5): 886–895
CrossRef Google scholar
[61]
MooreM J. From birth to death: the complex lives of eukaryotic mRNAs. Science, 2005, 309(5740): 1514–1518
CrossRef Google scholar
[62]
ChuangH, HofreeM, IdekerT. A decade of systems biology. Annual Reviews Cell and Developmental Biology, 2010, 26: 721–744
CrossRef Google scholar
[63]
OrphanidesG, Reinberg D. A unified theory of gene expression. Cell, 2002, 108(4): 439–451
CrossRef Google scholar
[64]
JaenischR, BirdA. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 2003, 33: 245–254
CrossRef Google scholar
[65]
ZhangW, ZhuJ, SchadtE E, Liu J S. A bayesian partition method for detecting pleiotropic and epistatic eQTL modules. Plos Computational Biology, 2010, 6(1): e1000642
CrossRef Google scholar
[66]
MankooP K, ShenR, SchultzN, Levine D A, SanderC . Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles. Plos One, 2011, 6(11): e24709
CrossRef Google scholar
[67]
KutalikZ, Beckmann J S, BergmannS . A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nature Biotechnology, 2008, 26(5): 531–539
CrossRef Google scholar
[68]
ChenJ Y, ZhangS H. Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics, 2016, 32(11): 1724–1732
CrossRef Google scholar
[69]
WittenD M, Tibshirani R J. Extensions of sparse canonical correlation analysis with applications to genomic data. Statistical Applications in Genetics and Molecular Biology, 2009, 8(1): 1–27
CrossRef Google scholar
[70]
ChenK, ChanK S, StensethN C . Reduced rank stochastic regression with a sparse singular value decomposition. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012, 74(2): 203–221
CrossRef Google scholar
[71]
MaX, XiaoL, WongW H. Learning regulatory programs by threshold SVD regression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 15675–15680
CrossRef Google scholar
[72]
ZhangS H, LiuC C, LiW Y, Shen H, LairdP W , ZhouX J. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Research, 2012, 40(19): 9379–9391
CrossRef Google scholar
[73]
ZhangS H, LiQ J, LiuJ, Zhou X J. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 2011, 27(13): 401–409
CrossRef Google scholar
[74]
ZitnikM, ZupanB. Data fusion by matrix factorization. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(1): 41–53
CrossRef Google scholar
[75]
LiW Y, ZhangS H, LiuC C, Zhou X J. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics, 2012, 28(19): 2458–2466
CrossRef Google scholar
[76]
KonstantinopoulosP A, Spentzos D, CannistraS A . Gene-expression profiling in epithelial ovarian cancer. Nature Clinical Practice Oncology, 2008, 5(10): 577–587
CrossRef Google scholar
[77]
CareyL A, PerouC M, LivasyC A, Dressler L G, CowanD , ConwayK, KaracaG, TroesterM A , TseC K, Edmiston S, DemingS L , GeradtsJ, CheangM C, NielsenT O, Moorman P G, EarpH S , MillikanR C. Race, breast cancer subtypes, and survival in the carolina breast cancer study. The Journal of the American Medical Association, 2006, 295(21): 2492–2502
CrossRef Google scholar
[78]
KonstantinopoulosP A, Spentzos D, KarlanB Y , TaniguchiT, Fountzilas E, FrancoeurN , LevineD A, Cannistra S A. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. Journal of Clinical Oncology, 2010, 28(22): 3555–3561
CrossRef Google scholar
[79]
VerhaakR G, Hoadley K A, PurdomE , WangV, QiY, WilkersonM D , MillerC R, DingL, GolubT, Mesirov J P, AlexeG , LawrenceM, O’Kelly M, TamayoP , WeirB A, Gabriel S, WincklerW , GuptaS, Jakkula L, FeilerH S , HodgsonJ G, JamesC D, SarkariaJ N , BrennanC, KahnA, SpellmanP T , WilsonR K, SpeedT P, GrayJ W, Meyerson M, GetzG , PerouC M, HayesD N, Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1): 98–110
CrossRef Google scholar
[80]
LiuZ Q, ZhangS H. Tumor characterization and stratification by integrated molecular profiles reveals essential pan-cancer features. BMC Genomics, 2015, 16: 503
CrossRef Google scholar
[81]
CurtisC, ShahS P, ChinS F, Turashvili G, RuedaO M , DunningM J, SpeedD, LynchA G, Samarajiwa S, YuanY , GräfS, HaG, HaffariG, Bashashati A, RussellR , McKinneyS; METABRIC Group, LangerødA , GreenA, Provenzano E, WishartG , PinderS, WatsonP, MarkowetzF, Murphy L, EllisI , PurushothamA, Børresen-Dale A L, BrentonJ D , TavaréS, CaldasC, AparicioS. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403): 346–352
[82]
ParkerJ S, Mullins M, CheangM C , LeungS, VoducD, VickeryT, Davies S, FauronC , HeX, HuZ, QuackenbushJ F , StijlemanI J, Palazzo J, MarronJ S , NobelA B, MardisE, NielsenT O, Ellis M J, PerouC M , BernardP S. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology, 2009, 27(8): 1160–1167
CrossRef Google scholar
[83]
ShoemakerR H. The NCI60 human tumor cell line screen. Nature Reviews Cancer, 2006, 6: 813–823
CrossRef Google scholar
[84]
EduatiF, Mangravite L M, WangT , TangH, BareJ C, HuangR, Norman T, KellenM , MendenM P, YangJ C, ZhanX W, Zhong R, XiaoG H , XiaM H, AbdoN, KosykO, NIEHS-NCATS-UNC DREAM Toxicogenetics Collaboration, FriendS, DearryA, SimeonovA, Tice R R, RusynI , WrightF A, Stolovitzky G, XieY , Saez-RodriguezJ. Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology, 2015, 33(9): 933–940
CrossRef Google scholar
[85]
ZhaoJ, ZhangX S, ZhangS H. Predicting cooperative drug effects through the quantitative cellular profiling of response to individual drugs. CPT: Pharmacometrics & Systems Pharmacology, 2014, 3(2): 1–7
CrossRef Google scholar
[86]
The Cancer Genome Atlas Research Network, WeinsteinJ N , CollissonE A, MillsG B, ShawK R, Ozenberger B A, EllrottK , ShmulevichI, SanderC, StuartJ M. The cancer genome atlas pan-cancer analysis project. Nature Genetics, 2013, 45(10): 1113–1120
[87]
ReimandJ, WagihO, BaderG D.The mutational landscape of phosphorylation signaling in cancer. Scientific Reports, 2013, 3: 2651
CrossRef Google scholar
[88]
WitteT, PlassC, GerhauserC. Pan-cancer patterns of DNA methylation. Genome Medicine, 2014, 6(8): 66
CrossRef Google scholar
[89]
GevaertO, Tibshirani R, PlevritisS K . Pancancer analysis of DNA methylation-driven genes using MethylMix. Genome Biology, 2015, 16: 17
CrossRef Google scholar
[90]
YangX F, ShaoX J, GaoL, Zhang S H. Systematic DNA methylation analysis of multiple cell lines reveals common and specific patterns within and across tissues of origin. Human Molecular Genetics, 2015, 24(15): 4374–4384
CrossRef Google scholar
[91]
YangX F, ShaoX J, GaoL, Zhang S H. Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Briefings in Bioinformatics, 2016, doi:10.1093/bib/bbw063
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(441 KB)

Accesses

Citations

Detail

Sections
Recommended

/