Sequential quadratic programming enhanced backtracking search algorithm

Wenting ZHAO , Lijin WANG , Yilong YIN , Bingqing WANG , Yuchun TANG

Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (2) : 316 -330.

PDF (2190KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (2) : 316 -330. DOI: 10.1007/s11704-016-5556-9
RESEARCH ARTICLE

Sequential quadratic programming enhanced backtracking search algorithm

Author information +
History +
PDF (2190KB)

Abstract

In this paper, we propose a new hybrid method called SQPBSA which combines backtracking search optimization algorithm (BSA) and sequential quadratic programming (SQP). BSA, as an exploration search engine, gives a good direction to the global optimal region, while SQP is used as a local search technique to exploit the optimal solution. The experiments are carried on two suits of 28 functions proposed in the CEC-2013 competitions to verify the performance of SQPBSA. The results indicate the proposed method is effective and competitive.

Keywords

numerical optimization / backtracking search algorithm / sequential quadratic programming / local search

Cite this article

Download citation ▾
Wenting ZHAO, Lijin WANG, Yilong YIN, Bingqing WANG, Yuchun TANG. Sequential quadratic programming enhanced backtracking search algorithm. Front. Comput. Sci., 2018, 12(2): 316-330 DOI:10.1007/s11704-016-5556-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Holland J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge, Massachusettes: The MIT press, 1992

[2]

Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012. Berkeley, CA: International Computer Science Institue, 1995

[3]

Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29–41

[4]

Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. 1995, 1942–1948

[5]

Eberhart R C, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. 1995, 39–43

[6]

Chen W N, Zhang J, Lin Y, Chen N, Zhan Z H, Chung H S H, Li Y, Shi Y H. Particle swarm optimization with an aging leader and challengers. IEEE Transactions on Evolutionary Computation, 2013, 17(2): 241–258

[7]

Yu W J, Shen M, Chen W N, Zhan Z H, Gong Y J, Lin Y, Liu O, Zhang J. Differential evolution with two-level parameter adaptation. IEEE Transactions on Cybernetics, 2014, 44(7): 1080–1099

[8]

Civicioglu P. Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation, 2013, 219(15): 8121–8144

[9]

Agarwal S K, Shah S, Kumar R. Classification of mental tasks from eeg data using backtracking search optimization based neural classifier. Neurocomputing, 2015, 166: 397–403

[10]

Yang D D, Ma H G, Xu D H, Zhang B H. Fault measurement for siso system using the chaotic excitation. Journal of the Franklin Institute, 2015, 352(8): 3267–3284

[11]

Zhang C J, Lin Q, Gao L, Li X Y. Backtracking search algorithm with three constraint handling methods for constrained optimization problems. Expert Systems with Applications, 2015, 42(21): 7831–7845

[12]

Zhao W T, Wang L J, Yin Y L, Wang B Q, Wei Y, Yin Y S. An improved backtracking search algorithm for constrained optimization problems. In: Proceedings of the 7th International Conference on Knowledge Science, Engineering and Management. 2014, 222–233

[13]

Mallick S, Kar R, Mandal D, Ghoshal S. CMOS analogue amplifier circuits optimisation using hybrid backtracking search algorithm with differential evolution. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28(4): 719–749

[14]

Wang L T, Zhong Y W, Yin Y L, Zhao W T, Wang B Q, Xu Y L. A hybrid backtracking search optimization algorithm with differential evolution. Mathematical Problems in Engineering, 2015

[15]

Ali A F. A memetic backtracking search optimization algorithm for economic dispatch problem. Egyptian Computer Science Journal, 2015, 39(2)

[16]

Qian C, Yu Y, Zhou Z H. Pareto ensemble pruning. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015, 2935–2941

[17]

Attaviriyanupap P, Kita H, Tanaka E, Hasegawa J. A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function. IEEE Transactions on Power Systems, 2002, 17(2): 411–416

[18]

Cai J J, Li Q, Li L X, Peng H P, Yang Y X. A hybrid CPSO–SQP method for economic dispatch considering the valve-point effects. Energy Conversion and Management, 2012, 53(1): 175–181

[19]

Basu M. Hybridization of bee colony optimization and sequential quadratic programming for dynamic economic dispatch. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 591–596

[20]

Morshed M J, Asgharpour A. Hybrid imperialist competitivesequential quadratic programming (HIC-SQP) algorithm for solving economic load dispatch with incorporating stochastic wind power: a comparative study on heuristic optimization techniques. Energy Conversion and Management, 2014, 84: 30–40

[21]

Zhan Z H, Zhang J, Li Y, Shi Y H. Orthogonal learning particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2011, 15(6): 832–847

[22]

Blum C, Puchinger J, Raidl G R, Roli A. Hybrid metaheuristics in combinatorial optimization: a survey. Applied Soft Computing, 2011, 11(6): 4135–4151

[23]

Lozano M, García-Martínez C. Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report. Computers & Operations Research, 2010, 37(3): 481–497

[24]

Zhang J, Zhan Z H, Lin Y, Chen N, Gong Y J, Zhong J H, Chung H, Li Y, Shi Y H. Evolutionary computation meets machine learning: a survey. Computational Intelligence Magazine, IEEE, 2011, 6(4): 68–75

[25]

Nocedal J, Wright S. Sequential quadratic programming. In: Sun W Y,Yuan Y X, eds. Optimization Theory and Methods. Springer Optimization and Its Application, Vol 1. Springer Science & Business Media, 2006, 529–533

[26]

Wilson R B. A simplicial algorithm for concave programming. Dissertation for the Doctoral Degree. Cambridge, MA: Harvard University, 1963

[27]

Liang J J, Qu B Y, Suganthan P N, Hernández-Díaz A G. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical Report. 2013

[28]

Qian H, Hu Y Q, Yu Y. Derivative-free optimization of highdimensional non-convex functions by sequential random embeddings. In: Preceedings of the 25th International Joint Conference on Artificial Intelligence. 2016, 1946–1952

[29]

Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report. 2005

[30]

Clerk M. Standard particle swarm optimisation. Technical Report. 2012

[31]

Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 2001, 9(2): 159–195

[32]

Igel C, Hansen N, Roth S. Covariance matrix adaptation for multiobjective optimization. Evolutionary Computation, 2007, 15(1): 1–28

[33]

Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281–295

[34]

Qin A K, Suganthan P N. Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of IEEE Congress on Evolutionary Computation. 2005, 1785–1791

[35]

Brest J, Greiner S, Bošković B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646–657

[36]

Suganthan P N, Hansen N, Liang J J, Deb K, Chen Y P, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report. 2005

[37]

Gong W Y, Cai Z H. Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics, 2013, 43(6): 2066–2081

[38]

Loshchilov I. CMA-ES with restarts for solving CEC 2013 benchmark problems. In: Proceedings of IEEE Congress on Evolutionary Computation. 2013, 369–376

[39]

Zambrano-Bigiarini M, Clerc M, Rojas R. Standard particle swarm optimisation 2011 at CEC-2013: a baseline for future PSO improvements. In: Proceedings of IEEE Congress on Evolutionary Computation. 2013, 2337–2344

[40]

El-Abd M. Testing a particle swarm optimization and artificial bee colony hybrid algorithm on the CEC13 benchmarks. In: Proceedings of IEEE Congress on Evolutionary Computation. 2013, 2215–2220

[41]

Dos Santos Coelho L, Ayala H V H. Population’s variance-based adaptive differential evolution for real parameter optimization. In: Proceedings of IEEE Congress on Evolutionary Computation. 2013, 1672–1677

[42]

Nepomuceno F V, Engelbrecht A P. A self-adaptive heterogeneous PSO for real-parameter optimization. In: Proceedings of IEEE Congress on Evolutionary Computation. 2013, 361–368

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (2190KB)

Supplementary files

Supplementary Material

841

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/