Stable and realistic crack pattern generation using a cracking node method

Juan ZHANG , Fuqing DUAN , Mingquan ZHOU , Dongcan JIANG , Xuesong WANG , Zhongke WU , Youliang HUANG , Guoguang DU , Shaolong LIU , Pengbo ZHOU , Xiangang SHANG

Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (4) : 777 -797.

PDF (3422KB)
Front. Comput. Sci. ›› 2018, Vol. 12 ›› Issue (4) : 777 -797. DOI: 10.1007/s11704-016-5511-9
RESEARCH ARTICLE

Stable and realistic crack pattern generation using a cracking node method

Author information +
History +
PDF (3422KB)

Abstract

This paper presents a method for simulating surface crack patterns appearing in ceramic glaze, glass, wood and mud. It uses a physically and heuristically combined method to model this type of crack pattern. A stress field is defined heuristically over the triangle mesh of an object. Then, a first-order quasi-static cracking node method (CNM) is used to model deformation. A novel combined stress and energy combined crack criterion is employed to address crack initiation and propagation separately according to physics. Meanwhile, a highest-stress-first rule is applied in crack initiation, and a breadth-first rule is applied in crack propagation. Finally, a local stress relaxation step is employed to evolve the stress field and avoid shattering artifacts. Other related issues are also discussed, such as the elimination of quadrature sub-cells, the prevention of parallel cracks and spurious crack procession. Using this method, a variety of crack patterns observed in the real world can be reproduced by changing a set of parameters. Consequently, our method is robust because the computational mesh is independent of dynamic cracks and has no sliver elements. We evaluate the realism of our results by comparing them with photographs of realworld examples. Further, we demonstrate the controllability of our method by varying different parameters.

Keywords

crack pattern generation / fracture simulation / physically-based / extend finite element method / crack node method

Cite this article

Download citation ▾
Juan ZHANG, Fuqing DUAN, Mingquan ZHOU, Dongcan JIANG, Xuesong WANG, Zhongke WU, Youliang HUANG, Guoguang DU, Shaolong LIU, Pengbo ZHOU, Xiangang SHANG. Stable and realistic crack pattern generation using a cracking node method. Front. Comput. Sci., 2018, 12(4): 777-797 DOI:10.1007/s11704-016-5511-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Brien J F, Hodgins J K. Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. 1999, 137–146

[2]

Pfaff T, Narain R, de Joya J M, O’Brien J F. Adaptive tearing and cracking of thin sheets. ACM Transactions on Graphics, 2014, 33(4): 1–9

[3]

Song J H, Belytschko T. Cracking node method for dynamic fracture with finite elements. International Journal for Numerical Methods in Engineering, 2009, 77(3): 360–385

[4]

Molino N, Bao Z, Fedkiw R. A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics, 2004, 23(3): 385

[5]

Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620

[6]

Melenk J, Babuška I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 289–314

[7]

Rabczuk T. Computational methods for fracture in brittle and quasibrittle solids: state-of-the-art review and future perspectives. Applied Mathematics, 2013, 2013: 1–38

[8]

Lindblad A, Turkiyyah G. A physically-based framework for real-time haptic cutting and interaction with 3D continuum models. In: Proceedings of ACM Symposium on Solid and Physical Modeling. 2007, 421–429

[9]

Chao S. Simulation for cutting deformable model based on X-FEM. In: Proceedings of International Conference on Intelligent Computing and Cognitive Informatics. 2010, 436–439

[10]

Kaufmann P, Martin S, Botsch M, Grinspun E, Gross M. Enrichment textures for detailed cutting of shells. ACM Transactions on Graphics, 2009, 28(3): 50

[11]

Jeřábková L, Kuhlen T. Stable cutting of deformable objects in virtual environments using XFEM. IEEE Computer Graphics and Applications, 2009, 29(2): 61–71

[12]

Turkiyyah G M, Karam W B, Ajami Z, Nasri A. Mesh cutting during real-time physical simulation. In: Proceedings of SIAM/ACM Joint Conference on Geometric and Physical Modeling. 2009, 159–168

[13]

Iben H N, O’Brien J F. Generating surface crack patterns. Graphical Models, 2009, 71(6): 198–208

[14]

Muguercia L, Bosch C, Patow G. Fracture modeling in computer graphics. Computers Graphics, 2014, 45: 86–100

[15]

Terzopoulos D, Platt J, Fleischert K. Elastically deformable models. Computer Graphics, 1987, 21(4): 205–214

[16]

Terzopoulos D, Fleischer K. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. ACM SIGGRAPH Computer Graphics, 1988, 22(4): 269–278

[17]

Wu J, Westermann R, Dick C. A survey of physically based simulation of cuts in deformable bodies. Computer Graphics Forum, 2015, 34(6): 161–187

[18]

Norton A, Turk G, Bacon B, Gerth J, Sweeney P. Animation of fracture by physical modeling. The Visual Computer, 1991, 7(4): 210–219

[19]

Lloyd B A, Szekely G, Harders M. Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(5): 1081–1094

[20]

Natsupakpong S, Çavu ¸soğlu M C. Determination of elasticity parameters in lumped element (mass-spring) models of deformable objects. Graphical Models, 2010, 72(6): 61–73

[21]

Liu T T, Bargteil A W, O’Brien J F, Kavan L. Fast simulation of massspring systems. ACM Transactions on Graphics, 2013, 32(6): 214

[22]

Kot M, Nagahashi H, Szymczak P. Elastic moduli of simple mass spring models. The Visual Computer, 2015, 31(10): 1339–1350

[23]

Levine J A, Bargteil A W, Corsi C, Tessendorf J, Geist R. A peridynamic perspective on spring-mass fracture? In: Proceedings of the ACMSIGGRAPH/Eurographics Symposium on Computer Animation. 2014, 47–55

[24]

O’Brien J F, Bargteil A W, Hodgins J K. Graphical modeling and animation of ductile fracture. ACM Transactions on Graphics, 2002, 21(3): 291–294

[25]

Bao Z S, Hong J M, Teran J, Fedkiw R. Fracturing rigid materials. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(2): 370–378

[26]

Busaryev O, Dey T K, Wang H. Adaptive fracture simulation of multilayered thin plates. ACM Transactions on Graphics, 2013, 32(4): 52

[27]

Matthias M, Gross M, Müller M. Interactive virtual materials. In: Proceedings of Graphics Interface. 2004, 239–246

[28]

James D L, Pai D K. Artdefo: accurate real time deformable objects. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. 1999, 65–72

[29]

Kielhorn L. A time-domain symmetric Galerkin BEM for viscoelastodynamics. Dissertation for the Doctoral Degree. Graz: Graz University of Technology, 2009

[30]

Zhu Y, Bridson R, Greif C. Simulating rigid body fracture with surface meshes. ACM Transactions on Graphics, 2015, 34(4): 150

[31]

Hahn D, Wojtan C. High-resolution brittle fracture simulation with boundary elements. ACM Transactions on Graphics, 2015, 34(4): 151

[32]

Müller M, Keiser R, Nealen A, Pauly M, Gross M, Alexa M. Point based animation of elastic, plastic and melting objects. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2004, 141–151

[33]

Pauly M, Keiser R, Adams B, Dutré P, Gross M, Guibas L J. Meshless animation of fracturing solids. ACM Transactions on Graphics, 2005, 24(3): 957–964

[34]

Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluidsolid interactions. Computer Animation and Virtual Worlds, 2007, 18(1): 69–82

[35]

Li C, Wang C B, Qin H. Novel adaptive SPH with geometric subdivision for brittle fracture animation of anisotropic materials. The Visual Computer, 2015, 31(6): 937–946

[36]

Liu N, He X W, Li S, Wang G P. Meshless simulation of brittle fracture. Computer Animation and Virtual Worlds, 2011, 22(2-3): 115–124

[37]

Hesham O. Fast meshless simulation of anisotropic tearing in elastic solids. Dissertation for the Doctoral Degree. Ottawa: Carleton University, 2011

[38]

Sifakis E, Der K G, Fedkiw R. Arbitrary cutting of deformable tetrahedralized objects. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 2007, 73–80

[39]

Wang Y T, Jiang C, Schroeder C, Teran J. An adaptive virtual node algorithm with robust mesh cutting. In: Proceedings of ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2014, 77–85

[40]

Glondu L, Marchal M, Dumont G. Real-time simulation of brittle fracture using modal analysis. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(2): 201–209

[41]

Hirota K, Tanoue Y, Kaneko T. Generation of crack patterns with a physical model. The Visual Computer, 1998, 14(3): 126–137

[42]

Hirota K, Tanoue Y, Kaneko T. Simulation of three-dimensional cracks. The Visual Computer, 2000, 16(7): 371–378

[43]

Gobron S, Chiba N. Crack pattern simulation based on 3D surface cellular automata. The Visual Computer, 2001, 17(5): 287–309

[44]

Gobron S, Norishige C. Simulation of peeling using 3D-surface cellular automata. In: Proceedings of the 9th Pacific Conference on Computer Graphics and Applications. 2001, 338–347

[45]

Federl P. Modeling fracture formation on growing surfaces. Dissertation for the Doctoral Degree. Calgary: University of Calgary, 2003

[46]

Paquette E, Poulin P, Drettakis G. The simulation of paint cracking and peeling. In: Proceedings of the Graphics Interface. 2002, 59–68

[47]

Valette G, Prévost S, Lucas L, Léonard J. A dynamic model of cracks development based on a 3D discrete shrinkage volume propagation. Computer Graphics Forum, 2008, 27(1): 47–62

[48]

Müller M, Chentanez N, Kim T Y. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Transactions on Graphics, 2013, 32(4): 115

[49]

Raghavachary S. Fracture generation on polygonal meshes using voronoi polygons. In: Proceedings of ACM SIGGRAPH Conference on Abstracts and Applications. 2002, 187–187

[50]

Tang Y, Fang K J, Fu S H, Zhang L B. An improved algorithm for simulating wax-printing patterns. Textile Research Journal, 2011, 81(14): 1510–1520

[51]

Schvartzman S C, Otaduy M A. Fracture animation based on highdimensional voronoi diagrams. In: Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. 2014, 15–22

[52]

Martinet A, Galin E, Desbenoit B, Akkouche S. Procedural modeling of cracks and fractures. In: Proceedings of Shape Modelling Applications. 2004, 346–349

[53]

Wyvill B, van Overveld K, Carpendale S. Rendering cracks in batik. In: Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering. 2004, 61–149

[54]

Hsieh H H, Tai W K. A straightforward and intuitive approach on generation and display of crack-like patterns on 3D objects. In: Nishita T, Peng Q S, Seidel H P, eds. Advances in Computer Graphics, Vol 4035. Berlin: Springer Heidelberg, 2006, 554–561

[55]

Lu J Y, Georghiades A S, Glaser A, Wu H Z, Wei L Y, Guo B N, Dorsey J, Rushmeier H. Context-aware textures. ACM Transaction on Graphics, 2007, 26(1): 3

[56]

Wei L Y, Lefebvre S, Kwatra V, Turk G. State of the art in examplebased texture synthesis. In: Proceedings of Eurographicsthe ACM SIGGRAPH/ Eurographics. 2009, 93–117

[57]

Glondu L. Physically-based and real-time simulation of brittle fracture for interactive applications. Dissertation for the Doctoral Degree. Cachan: École normale supérieure de Cachan-ENS Cachan, 2012

[58]

Liu S G, Chen D. Computer simulation of batik printing patterns with cracks. Textile Research Journal, 2015, 85(18): 1972–1984

[59]

Gross D, Seelig T. Fracture Mechanics: With an Introduction to Micromechanics. Springer Science & Business Media, 2011

[60]

Wicke M, Ritchie D, Klingner B M, Burke S, Shewchuk J R, O’Brien J F. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics, 2010, 29(4): 49

[61]

Koschier D, Lipponer S, Bender J. Adaptive tetrahedral meshes for brittle fracture simulation. In: Proceedings of ACM SIGGRAPH/ Eurographics Symposium on Computer Animation. 2014, 58–66

[62]

Freund L B. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1990

[63]

Ventura G. On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. International Journal for Numerical Methods in Engineering, 2006, 66(5): 761–795

[64]

Fung Y C. A First Course in Continuum Mechanics. Englewood Cliffs, NJ: Prentice-Hall, 1994

[65]

Rusinkiewicz S. Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission. 2004, 486–493

[66]

Iben H N. Generating Surface Crack Patterns. Dissertation for the Doctoral Degree. Berkeley: University of California, Berkeley, 2007

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (3422KB)

Supplementary files

Supplementary Material

1197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/