Identity-based aggregate signcryption in the standard model from multilinear maps

Hao WANG , Zhen LIU , Zhe LIU , Duncan S. WONG

Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 741 -754.

PDF (710KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 741 -754. DOI: 10.1007/s11704-015-5138-2
RESEARCH ARTICLE

Identity-based aggregate signcryption in the standard model from multilinear maps

Author information +
History +
PDF (710KB)

Abstract

Signcryption is a public key cryptographic method that achieves unforgeability and confidentiality simultaneously with significantly smaller overhead than that required by “digital signature followed by public key encryption”. It does this by signing and encrypting a message in a single step. An aggregate signcryption scheme allows individual signcryption ciphertexts intended for the same recipient to be aggregated into a single (shorter) combined ciphertext without losing any of the security guarantees. We present an aggregate signcryption scheme in the identity-based setting using multilinear maps, and provide a proof of security in the standard model. To the best of our knowledge, our new scheme is the first aggregate signcryption scheme that is secure in the standard model.

Keywords

identity-based aggregate signcryption / multilinear maps / standard model / GGH framework

Cite this article

Download citation ▾
Hao WANG, Zhen LIU, Zhe LIU, Duncan S. WONG. Identity-based aggregate signcryption in the standard model from multilinear maps. Front. Comput. Sci., 2016, 10(4): 741-754 DOI:10.1007/s11704-015-5138-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng Y L. Digital signcryption or how to achieve cost (signature & encryption)<<cost(signature) + cost(encryption). In: Proceedings of the 17th Annual International Cryptology Conference. 1997, 165–179

[2]

Baek J, Steinfeld R, Zheng Y L. Formal proofs for the security of signcryption. In: Proceedings of the 5th International Workshop on Practice and Theory in Public Key Cryptosystems. 2002, 80–98

[3]

Zheng Y L, Imai H. How to construct efficient signcryption schemes on elliptic curves. Information Processing Letters, 1998, 68(5): 227–233

[4]

Bao F, Deng R H. A signcryption scheme with signature directly verifiable by public key. In: Proceedings of the First International Workshop on Practice and Theory in Public Key Cryptography. 1998, 55–59

[5]

Hwang R S, Lai C H, Su F F. An efficient signcryption scheme with forward secrecy based on elliptic curve. Applied Mathematics and Computation, 2005, 167(2): 870–881

[6]

Shamir A. Identity-based cryptosystems and signature schemes. In: Proceedings of CRYPTO. 1984, 47–53

[7]

Malone-Lee J. Identity-based signcryption. IACR Cryptology ePrint Archive, 2002, 98

[8]

Libert B, Quisquater J J. New identity based signcryption schemes from pairings. IACR Cryptology ePrint Archive, 2003, 23

[9]

Chow S S M, Yiu S M, Hui L C K, Chow K P. Efficient forward and provably secure id-based signcryption scheme with public verifiability and public ciphertext authenticity. In: Proceedings of the 6th International Conference on Information Security and Cryptology (ICISC 2003). 2003, 352–369

[10]

Boyen X. Multipurpose identity-based signcryption. In: Proceedings of the 23rd Annual International Cryptology Conference. 2003, 383–399

[11]

Chen L Q, Malone-Lee J. Improved identity-based signcryption. In: Proceedings of the 8th International Workshop on Theory and Practice in Public Key Cryptography. 2005, 362–379

[12]

Barreto P S L M, Libert B, McCullagh N, Quisquater J J. Efficient and provably-secure identity-based signatures and signcryption from bilinear maps. In: Proceedings of the 11th International Conference on the Theory and Application of Cryptology and Information Security. 2005, 515–532

[13]

Selvi S S D, Vivek S S, Shriram J, Kalaivani S, Rangan C P. Identity based aggregate signcryption schemes. In: Proceedings of the 10th International Conference on Cryptology in India. 2009, 378–397

[14]

Ren X Y, Qi Z H, Geng Y. Provably secure aggregate signcryption scheme. ETRI Journal, 2012, 34(3): 421–428

[15]

Qi Z H, Ren X Y, Geng Y. Provably secure general aggregate signcryption scheme in the random oracle modele. China Communications, 2012, 9(11): 107–116

[16]

Kar J. Provably secure identity-based aggregate signcryption scheme in random oracles. IACR Cryptology ePrint Archive, 2013, 37

[17]

Dent A W. Aggregate signcryption. IACR Cryptology ePrint Archive, 2012, 200

[18]

Eslami Z, Pakniat N. Certificateless aggregate signcryption schemes. IACR Cryptology ePrint Archive, 2011, 360

[19]

Lu H J, Xie Q. An efficient certificateless aggregate signcryptionscheme from pairings. In: Proceedings of 2011 International Conference on Electronics, Communications and Control (ICECC-2011). 2011, 132–135

[20]

Canetti R, Goldreich O, Halevi S. The random oracle methodology, revisited. Journal of the ACM, 2004, 51(4): 557–594

[21]

Hohenberger S, Sahai A, Waters B. Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Proceedings of the 33rd Annual Cryptology Conference, Part I. 2013, 494–512

[22]

Boneh D, Silverberg A. Applications of multilinear forms to cryptography. Contemporary Mathematics, 2003, 324(1): 71–90

[23]

Garg S, Gentry C, Halevi S. Candidate multilinear maps from ideal lattices. In: Proceedings of the 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques. 2013, 1–17

[24]

Freire E S V, Hofheinz D, Paterson K G, Striecks C. Programmable hash functions in the multilinear setting. In: Proceedings of the 33rd Annual Cryptology Conference, Part I. 2013, 513–530

[25]

Wang H, Zheng Z H, Yang B. New identity-based key-encapsulation mechanism and its applications in cloud computing. International Journal of High Performance Computing and Networking, 2015, 8(2): 124–134

[26]

Hoffstein J, Pipher J, Silverman J H. NTRU: a ring-based public key cryptosystem. In: Proceedings of the 3rd Intemational Symposium on Algorithmic Number Theory (ANTS-III). 1998, 267–288

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (710KB)

Supplementary files

FCS-0741-15138-ZL_suppl_1

1149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/