Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV

Samir ZEGHLACHE, Djamel SAIGAA, Kamel KARA

PDF(1194 KB)
PDF(1194 KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 657-672. DOI: 10.1007/s11704-015-4448-8
RESEARCH ARTICLE

Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV

Author information +
History +

Abstract

In this paper, a robust controller for a six degrees of freedom (6 DOF) octorotor helicopter control is proposed in presence of actuator and sensor faults. Neural networks (NN), interval type-2 fuzzy logic control (IT2FLC) approach and sliding mode control (SMC) technique are used to design a controller, named fault tolerant neural network interval type-2 fuzzy sliding mode controller (FTNNIT2FSMC), for each subsystem of the octorotor helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the number of rules for the fuzzy controller, and guaranteeing the stability and the robustness of the system. The simulation results show that the FTNNIT2FSMC can greatly alleviate the chattering effect, tracking well in presence of actuator and sensor faults.

Keywords

neural networks / type-2 fuzzy logic / sliding mode controller / fault tolerant control / octorotor helicopter

Cite this article

Download citation ▾
Samir ZEGHLACHE, Djamel SAIGAA, Kamel KARA. Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV. Front. Comput. Sci., 2016, 10(4): 657‒672 https://doi.org/10.1007/s11704-015-4448-8

References

[1]
Altuˇg E, Ostrowski J, Mahony R. Control of a quadrotor helicopter using visual feedback. In: Proceedings of the IEEE International Conference on Robotics and Automation. 2002, 72–77
CrossRef Google scholar
[2]
Chen M, Huzmezan M. Asimulation model and Hinf loop shaping control of a quadrotor unmaned aerial vehicle. In: Proceedings of the International Conference on Modeling, Simulation and Optimization. 2003
[3]
Bouabdallah S, Noth A, Siegwart R. PID vs LQ control techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. 2004, 2451–2546
CrossRef Google scholar
[4]
Madani T, Benallegue A. Backstepping control for a quadrotor helicopter. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. 2006, 3255–3260
CrossRef Google scholar
[5]
Al-Hiddabi S. Quadrotor control using feedback linearization with dynamic extension. In: Proceedings of the 6th IEEE International Symposium on Mechatronics and Its Applications. 2009, 1–3
CrossRef Google scholar
[6]
Basri M A M, Husain A R, Danapalasingam K A. Enhanced backstepping controller design with application to autonomous quadrotor unmanned aerial vehicle. Journal of Intelligent & Robotic Systems, 2015, 79(2): 295–321
CrossRef Google scholar
[7]
Utkin V I. Sliding Modes in Control and Optimization. Springer Science & Business Media, 2013
[8]
Xu R, Ozgüner U. Sliding mode control of a class of underactuated systems. Automatica, 2008, 44(1): 233–241
CrossRef Google scholar
[9]
Fang Z, Zhi Z, Jun L, Jian W. Feedback linearization and continuous sliding mode control for a quadrotor UAV. In: Proceedings of the 27th IEEE Chinese Control Conference. 2008, 349–353
[10]
Madani T, Benallegue A. Backstepping sliding mode control applied to a miniature quadrotor flying robot. In: Proceedings of the 32nd IEEE International Conference on Industrial Electronics. 2006, 700–705
CrossRef Google scholar
[11]
Lee D, Jinkim H J, Astry S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. International Journal of control, Automation, and Systems, 2009, 7(3): 419–428
CrossRef Google scholar
[12]
Xiong J J, Zheng E H. Position and attitude tracking control for a quadrotor UAV. ISA Transaction, 2014, 53(3): 725–731
CrossRef Google scholar
[13]
Ramirez-Rodriguez H, Parra-Vega V, Sanchez-Orta A, Garcia-Salazar O. Robust backstepping control based on integral sliding modes for tracking of quadrotors. Journal of Intelligent & Robotic Systems, 2014, 73(1): 51–66
CrossRef Google scholar
[14]
Zheng E H, Xiong J J, Luo J L. Second order sliding mode control for a quadrotor UAV. ISA Transaction, 2014, 53(4): 1350–1356
CrossRef Google scholar
[15]
Chen X J, Li D, Bai Y, Xu Z. Modeling and neuro-fuzzy adaptive attitude control for eight-rotor MAV. International Journal of control, Automation, and Systems, 2011, 9(6): 1154–1163
CrossRef Google scholar
[16]
Rinaldi F, Gargioli A, Quagliotti F. PID and LQ Regulation of a Multirotor Attitude: Mathematical Modelling, Simulations and Experimental Results. Journal of Intelligent & Robotic Systems, 2014, 73(1): 33–50
CrossRef Google scholar
[17]
Amoozgar M, Chamseddine A, Zhang Y. Experimental test of a twostage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. Journal of Intelligent & Robotic Systems, 2013, 70 (1): 107–117
CrossRef Google scholar
[18]
Cen Z, Noura H, Susilo T B, Al Younes Y. Robust fault diagnosis for quadrotor UAVs using adaptive Thau observer. Journal of Intelligent & Robotic Systems, 2014, 73(1): 573–588
CrossRef Google scholar
[19]
Adir V G, Stoica M, Whidbrorene J F. Sliding mode control of a 4Y octorotor. University Politehnica of Bucharest Scientific Bulletin Series D, 2012, 74(4): 37–52
[20]
Liang Q, Mendel J M. Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 535–550
CrossRef Google scholar
[21]
Mendel J. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Englewood Cliffs, NJ: Prentice-Hall, 2001
[22]
Castillo O, Melin P. A review on the design and optimization of interval type-2 fuzzy controllers. Applied Soft Computing, 2012, 12(4): 1267–1278
CrossRef Google scholar
[23]
Castro J R, Castillo O, Melin P, Rodríguez-Díaz A. A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Information Sciences, 2009, 179(13): 2175–2193
CrossRef Google scholar
[24]
Martínez R., Castillo O, Aguilar L T. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Information Sciences, 2009, 179(13): 2158–2174
CrossRef Google scholar
[25]
Wu D R, Tan W W. A simplified type-2 fuzzy logic controller for realtime control. ISA Transactions, 2006, 45(4): 503–516
CrossRef Google scholar
[26]
Castillo O, Martínez-Marroquín R, Melin P, Valdez F, Soria J. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Information Sciences, 2012, 192(7): 19–38
CrossRef Google scholar
[27]
Khalal O, Mellit A, Rahim M, Salhi H, Guessoum A. Robust control of manipulator robot by using the variable structure control with sliding mode. In: Proceeding of the IEEE Mediterranean conference on Control & Automation. 2007, 1–6
CrossRef Google scholar
[28]
Ertugrul M, Kaynak O. Neuro-sliding mode control of robotic manipulators. Mechatronics, 2000, 10(1): 239–263
CrossRef Google scholar
[29]
Ertugrul M, Kaynak O. Neural computation of the equivalent control in sliding mode for robot trajectory control applications. In: Proceedings of the IEEE International Conference on Robotics and Automation. 1998, 2042–2047
CrossRef Google scholar
[30]
Tsai C H, Chung H Y, Yu F M. Neuro-sliding mode control with its applications to seesaw systems. IEEE Transactions on Neural Networks, 2004, 15(1): 124–134
CrossRef Google scholar
[31]
Bouabdellah S, Siegwart R. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE International Conference on Robotics and Automation. 2005, 2247–2252
CrossRef Google scholar
[32]
Benallegue A, Mokhtari A, Fridman L. Feedback linearization and high order sliding mode observer for a quadrotor UAV. In: Proceedings of the IEEE International Workshop on Variable Structure Systems. 2006, 365–370
CrossRef Google scholar
[33]
Castillo O, Melin P. Type-2 Fuzzy Logic: Theory and Applications. Berlin: Springer-Verlag, 2008

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1194 KB)

Accesses

Citations

Detail

Sections
Recommended

/