Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV

Samir ZEGHLACHE , Djamel SAIGAA , Kamel KARA

Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 657 -672.

PDF (944KB)
Front. Comput. Sci. ›› 2016, Vol. 10 ›› Issue (4) : 657 -672. DOI: 10.1007/s11704-015-4448-8
RESEARCH ARTICLE

Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV

Author information +
History +
PDF (944KB)

Abstract

In this paper, a robust controller for a six degrees of freedom (6 DOF) octorotor helicopter control is proposed in presence of actuator and sensor faults. Neural networks (NN), interval type-2 fuzzy logic control (IT2FLC) approach and sliding mode control (SMC) technique are used to design a controller, named fault tolerant neural network interval type-2 fuzzy sliding mode controller (FTNNIT2FSMC), for each subsystem of the octorotor helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the number of rules for the fuzzy controller, and guaranteeing the stability and the robustness of the system. The simulation results show that the FTNNIT2FSMC can greatly alleviate the chattering effect, tracking well in presence of actuator and sensor faults.

Keywords

neural networks / type-2 fuzzy logic / sliding mode controller / fault tolerant control / octorotor helicopter

Cite this article

Download citation ▾
Samir ZEGHLACHE, Djamel SAIGAA, Kamel KARA. Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV. Front. Comput. Sci., 2016, 10(4): 657-672 DOI:10.1007/s11704-015-4448-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altuˇg E, Ostrowski J, Mahony R. Control of a quadrotor helicopter using visual feedback. In: Proceedings of the IEEE International Conference on Robotics and Automation. 2002, 72–77

[2]

Chen M, Huzmezan M. Asimulation model and Hinf loop shaping control of a quadrotor unmaned aerial vehicle. In: Proceedings of the International Conference on Modeling, Simulation and Optimization. 2003

[3]

Bouabdallah S, Noth A, Siegwart R. PID vs LQ control techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. 2004, 2451–2546

[4]

Madani T, Benallegue A. Backstepping control for a quadrotor helicopter. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. 2006, 3255–3260

[5]

Al-Hiddabi S. Quadrotor control using feedback linearization with dynamic extension. In: Proceedings of the 6th IEEE International Symposium on Mechatronics and Its Applications. 2009, 1–3

[6]

Basri M A M, Husain A R, Danapalasingam K A. Enhanced backstepping controller design with application to autonomous quadrotor unmanned aerial vehicle. Journal of Intelligent & Robotic Systems, 2015, 79(2): 295–321

[7]

Utkin V I. Sliding Modes in Control and Optimization. Springer Science & Business Media, 2013

[8]

Xu R, Ozgüner U. Sliding mode control of a class of underactuated systems. Automatica, 2008, 44(1): 233–241

[9]

Fang Z, Zhi Z, Jun L, Jian W. Feedback linearization and continuous sliding mode control for a quadrotor UAV. In: Proceedings of the 27th IEEE Chinese Control Conference. 2008, 349–353

[10]

Madani T, Benallegue A. Backstepping sliding mode control applied to a miniature quadrotor flying robot. In: Proceedings of the 32nd IEEE International Conference on Industrial Electronics. 2006, 700–705

[11]

Lee D, Jinkim H J, Astry S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. International Journal of control, Automation, and Systems, 2009, 7(3): 419–428

[12]

Xiong J J, Zheng E H. Position and attitude tracking control for a quadrotor UAV. ISA Transaction, 2014, 53(3): 725–731

[13]

Ramirez-Rodriguez H, Parra-Vega V, Sanchez-Orta A, Garcia-Salazar O. Robust backstepping control based on integral sliding modes for tracking of quadrotors. Journal of Intelligent & Robotic Systems, 2014, 73(1): 51–66

[14]

Zheng E H, Xiong J J, Luo J L. Second order sliding mode control for a quadrotor UAV. ISA Transaction, 2014, 53(4): 1350–1356

[15]

Chen X J, Li D, Bai Y, Xu Z. Modeling and neuro-fuzzy adaptive attitude control for eight-rotor MAV. International Journal of control, Automation, and Systems, 2011, 9(6): 1154–1163

[16]

Rinaldi F, Gargioli A, Quagliotti F. PID and LQ Regulation of a Multirotor Attitude: Mathematical Modelling, Simulations and Experimental Results. Journal of Intelligent & Robotic Systems, 2014, 73(1): 33–50

[17]

Amoozgar M, Chamseddine A, Zhang Y. Experimental test of a twostage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. Journal of Intelligent & Robotic Systems, 2013, 70 (1): 107–117

[18]

Cen Z, Noura H, Susilo T B, Al Younes Y. Robust fault diagnosis for quadrotor UAVs using adaptive Thau observer. Journal of Intelligent & Robotic Systems, 2014, 73(1): 573–588

[19]

Adir V G, Stoica M, Whidbrorene J F. Sliding mode control of a 4Y octorotor. University Politehnica of Bucharest Scientific Bulletin Series D, 2012, 74(4): 37–52

[20]

Liang Q, Mendel J M. Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 535–550

[21]

Mendel J. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Englewood Cliffs, NJ: Prentice-Hall, 2001

[22]

Castillo O, Melin P. A review on the design and optimization of interval type-2 fuzzy controllers. Applied Soft Computing, 2012, 12(4): 1267–1278

[23]

Castro J R, Castillo O, Melin P, Rodríguez-Díaz A. A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks. Information Sciences, 2009, 179(13): 2175–2193

[24]

Martínez R., Castillo O, Aguilar L T. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Information Sciences, 2009, 179(13): 2158–2174

[25]

Wu D R, Tan W W. A simplified type-2 fuzzy logic controller for realtime control. ISA Transactions, 2006, 45(4): 503–516

[26]

Castillo O, Martínez-Marroquín R, Melin P, Valdez F, Soria J. Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Information Sciences, 2012, 192(7): 19–38

[27]

Khalal O, Mellit A, Rahim M, Salhi H, Guessoum A. Robust control of manipulator robot by using the variable structure control with sliding mode. In: Proceeding of the IEEE Mediterranean conference on Control & Automation. 2007, 1–6

[28]

Ertugrul M, Kaynak O. Neuro-sliding mode control of robotic manipulators. Mechatronics, 2000, 10(1): 239–263

[29]

Ertugrul M, Kaynak O. Neural computation of the equivalent control in sliding mode for robot trajectory control applications. In: Proceedings of the IEEE International Conference on Robotics and Automation. 1998, 2042–2047

[30]

Tsai C H, Chung H Y, Yu F M. Neuro-sliding mode control with its applications to seesaw systems. IEEE Transactions on Neural Networks, 2004, 15(1): 124–134

[31]

Bouabdellah S, Siegwart R. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In: Proceedings of the IEEE International Conference on Robotics and Automation. 2005, 2247–2252

[32]

Benallegue A, Mokhtari A, Fridman L. Feedback linearization and high order sliding mode observer for a quadrotor UAV. In: Proceedings of the IEEE International Workshop on Variable Structure Systems. 2006, 365–370

[33]

Castillo O, Melin P. Type-2 Fuzzy Logic: Theory and Applications. Berlin: Springer-Verlag, 2008

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (944KB)

Supplementary files

FCS-0657-14448-SZ_suppl_1

1332

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/