Detecting differential expression from RNA-seq data with expression measurement uncertainty

Li ZHANG , Songcan CHEN , Xuejun LIU

Front. Comput. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 652 -663.

PDF (709KB)
Front. Comput. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 652 -663. DOI: 10.1007/s11704-015-4308-6
RESEARCH ARTICLE

Detecting differential expression from RNA-seq data with expression measurement uncertainty

Author information +
History +
PDF (709KB)

Abstract

High-throughput RNA sequencing (RNA-seq) has emerged as a revolutionary and powerful technology for expression profiling. Most proposed methods for detecting differentially expressed (DE) genes from RNA-seq are based on statistics that compare normalized read counts between conditions. However, there are few methods considering the expression measurement uncertainty into DE detection. Moreover, most methods are only capable of detecting DE genes, and few methods are available for detecting DE isoforms. In this paper, a Bayesian framework (BDSeq) is proposed to detect DE genes and isoforms with consideration of expression measurement uncertainty. This expression measurement uncertainty provides useful information which can help to improve the performance of DE detection. Three real RAN-seq data sets are used to evaluate the performance of BDSeq and results show that the inclusion of expression measurement uncertainty improves accuracy in detection of DE genes and isoforms. Finally, we develop a GamSeq-BDSeq RNA-seq analysis pipeline to facilitate users.

Keywords

RNA-seq / Bayesian method / differentially expressed genes/isoforms / expression measurement uncertainty / analysis pipeline

Cite this article

Download citation ▾
Li ZHANG, Songcan CHEN, Xuejun LIU. Detecting differential expression from RNA-seq data with expression measurement uncertainty. Front. Comput. Sci., 2015, 9(4): 652-663 DOI:10.1007/s11704-015-4308-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mortazavi A, Williams A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621―628

[2]

Marioni J, Mason C, Mane S, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 2008, 18: 1509―1517

[3]

Marguerat S, Bähler J. RNA-seq: from technology to biology. Cellular and Molecular Life Sciences, 2010, 67(4): 569―579

[4]

Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason C E, Socci N D, Betel D. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biology, 2013, 14(9): R95

[5]

Zhang Z H, Jhaveri D J, Marshall VM, Bauer D C, Edson J, Narayanan R K, Zhao Q. A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS ONE, 2014, 9: e103207

[6]

Ozsolak F, Milos P. RNA sequencing: advances, challenges and opportunities. Nature Reviews Genetics, 2011, 12(2): 87―98

[7]

Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 2013, 14(1): 9

[8]

Kvam V, Lu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from Rna-Seq data. American Journal of Botany, 2012, 99(2): 248―256

[9]

Seyednasrollah F, Laiho A, Elo L L. Comparison of software packages for detecting differential expression in RNA-seq studies. Briefings in bioinformatics, 2013, bbt086

[10]

Anders S, McCarthy D J, Chen Y, Okoniewski M, Smyth G K, Huber W, Robinson M D. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols, 2013, 8(9): 1765―1786

[11]

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology, 2010, 11(10): R106

[12]

Hardcastle T, Kelly K. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 2010, 11(1): 422

[13]

Di Y, Schafer D, Cumbie J, Chang J. The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Statistical Applications in Genetics and Molecular Biology, 2011, 10(1): 1―28

[14]

Yu D, Huber W, Vitek O. Shrinkage estimation of dispersion in negative binomial models for RNA-seq experiments with small sample size. Bioinformatics, 2013, 29(10): 1275―1282

[15]

Robinson M, Smyth G. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 2007, 23(21): 2881―2887

[16]

Wu H, Wang C, Wu Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics, 2013, 14(2): 232―243

[17]

Law CW, Chen Y, Shi W, Smyth G K. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology, 2014, 15: R29

[18]

Bi Y, Davuluri R V. NPEBseq: nonparametric empirical bayesianbased procedure for differential expression analysis of RNA-seq data. BMC bioinformatics, 2013, 14(1): 262

[19]

Sandmann T, Vogg M, Owlarn S, Boutros M, Bartscherer K. The headregeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biol, 2011, 12(8): R76

[20]

Jiang H, Wong W. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 2009, 25(8): 1026―1032

[21]

Li B, Dewey C. RSEM: accurate transcript quantification from RNASeq data with or without a reference genome. BMC Bioinformatics, 2011, 12(1): 323

[22]

Trapnell C, Williams B, Pertea G, Mortazavi A, Kwan G, Baren M, Salzberg S, Wold B, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 2010, 28(5): 211―215

[23]

Glaus P, Honkela A, Rattray M. Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics, 2011, 28(13): 1721―1728

[24]

Leng N, Dawson J, Thomson A, Ruotti V, Rissman A, Smits B M G, Haag J D, Gould M N, Stewart R M, Kendziorski C. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 2013, 29(8): 1035―1043

[25]

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D, Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562―578

[26]

Hein A, Richardson S, Causton H, Ambler G, Green P. BGX: a fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data. Biostatistics, 2005, 6(3): 349―373

[27]

Liu X, Milo M, Lawrence D, Rattray M. Probe-level measurement error improv<?Pub Caret?>es accuracy in detecting differential gene expression. Bioinformatics, 2006, 22(17): 2107&horbar;2113

[28]

Zhang L, Liu X. An improved probabilistic model for finding differential gene expression. In: Proceedings of the 2nd International Conference on Biomedical Engineering and Informatics. 2009, 1-4: 1566&horbar;1571

[29]

Zhang L, Liu X. A Gamma-based method of RNA-seq analysis. Journal of Nanjing University (Natural Sciences), 2013, 49: 465&horbar;474(in Chinese)

[30]

Jordan M, Ghahramani Z, Jaakkola T, Saul L. An introduction to variational methods for graphical models. Machine Learning, 1999, 37(2): 183&horbar;233

[31]

Sun J, Kaban A. A fast algorithm for robust mixtures in the presence of measurement errors. IEEE Transactions on Neural Networks, 2010, 21(8): 1206&horbar;1220

[32]

MAQC Consortium. TheMicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nature Biotechnology, 2006, 24(9): 1151&horbar;1161

[33]

Canales R D, Luo Y L, Willey J C, Austermiller B, Barbacioru C C, Boysen C, Hunkapiller K, Jensen R V, Knight C R, Lee K Y, Ma Y Q, Maqsodi B, Papallo A, Peters E H, Poulter K, Ruppel P L, Samaha R R, Shi L M, Yang W, Zhang L, Goodsaid F M. Evaluation of DNA microarray results with quantitative gene expression platforms. Nature Biotechnology, 2006, 24(9): 1115&horbar;1122

[34]

Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin R D, Corbett R, Tang M J, Hou Y C, Pugh T J, Robertson G, Chittaranjan S, Ally A, Asano J K, Chan S Y, Li H Y I, McDonald H, Teague K, Zhao Y J, Zeng T, Delaney A, Hirst M, Morin G B, Jones S GM, Tai I T, Marra M A. Alternative expression analysis by RNA sequencing. Nature Methods, 2010, 7(10): 843&horbar;847

[35]

Wang E, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456(7221): 470&horbar;476

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (709KB)

Supplementary files

Supplementary Material-Highlights in 3-page ppt

967

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/