XGRouter: high-quality global router in X-architecture with particle swarm optimization

Genggeng LIU, Wenzhong GUO, Rongrong LI, Yuzhen NIU, Guolong CHEN

PDF(816 KB)
PDF(816 KB)
Front. Comput. Sci. ›› 2015, Vol. 9 ›› Issue (4) : 576-594. DOI: 10.1007/s11704-015-4017-1
RESEARCH ARTICLE

XGRouter: high-quality global router in X-architecture with particle swarm optimization

Author information +
History +

Abstract

This paper presents a high-quality very large scale integration (VLSI) global router in X-architecture, called XGRouter, that heavily relies on integer linear programming (ILP) techniques, partition strategy and particle swarm optimization (PSO). A new ILP formulation, which can achieve more uniform routing solution than other formulations and can be effectively solved by the proposed PSO is proposed. To effectively use the new ILP formulation, a partition strategy that decomposes a large-sized problem into some small-sized sub-problems is adopted and the routing region is extended progressively from the most congested region. In the post-processing stage of XGRouter, maze routing based on new routing edge cost is designed to further optimize the total wire length and mantain the congestion uniformity. To our best knowledge, XGRouter is the first work to use a concurrent algorithm to solve the global routing problem in X-architecture. Experimental results show that XGRouter can produce solutions of higher quality than other global routers. And, like several state-of-the-art global routers, XGRouter has no overflow.

Keywords

global routing / overflow / total wire length / congestion uniformity / X-architecture / particle swarm optimization / integer linear programming

Cite this article

Download citation ▾
Genggeng LIU, Wenzhong GUO, Rongrong LI, Yuzhen NIU, Guolong CHEN. XGRouter: high-quality global router in X-architecture with particle swarm optimization. Front. Comput. Sci., 2015, 9(4): 576‒594 https://doi.org/10.1007/s11704-015-4017-1

References

[1]
Chang Y J, Lee Y T, Gao J R, Wu P C, Wang T C. NTHU-route 2.0: a robust global router for modern designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, 29(12): 1931―1944
CrossRef Google scholar
[2]
Roy J A, Markov I L. High-performance routing at the nanometer scale. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(6): 1066―1077
CrossRef Google scholar
[3]
Zhang Y, Xu Y, Chu C. FastRoute3.0: a fast and high quality global router based on virtual capacity. In: Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design. 2008, 344―349
CrossRef Google scholar
[4]
Dai K R, Liu W H, Li Y L. NCTU-GR: efficient simulated evolutionbased rerouting and congestion-relaxed layer assignment on 3-D global routing. IEEE Transactions on Very Large Scale Integration Systems, 2012, 20(3): 459―472
CrossRef Google scholar
[5]
Moffitt M D. Maizerouter: engineering an effective global router. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(11): 2017―2026
CrossRef Google scholar
[6]
Ao J, Dong S, Chen S, Goto S. Delay-driven layer assignment in global routing under multi-tier interconnect structure. In: Proceedings of the 2013 ACM International Symposium on International Symposium on Physical Design. 2013, 101―107
CrossRef Google scholar
[7]
Ozdal M M, Wong M D F. Archer: a history-based global routing algorithm. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(4): 528―540
CrossRef Google scholar
[8]
Liu W H, Kao W C, Li Y L, Chao K Y. NCTU-GR 2.0: multithreaded collision-aware global routing with bounded-length maze routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(5):709―722
CrossRef Google scholar
[9]
Cho M, Pan D Z. BoxRouter: a new global router based on box expansion and progressive ILP. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26(12): 2130―2143
CrossRef Google scholar
[10]
Albrecht C. Global routing by new approximation algorithms for multicommodity flow. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2001, 20(5): 622―632
CrossRef Google scholar
[11]
Hu J, Roy J A, Markov I L. Sidewinder: a scalable ILP-based router. In: Proceedings of ACM International Workshop on System Level Interconnect Prediction. 2008, 73―80
CrossRef Google scholar
[12]
Cho M, Lu K, Yuan K, Pan D Z. BoxRouter 2.0: a hybrid and robust global router with layer assignment for routability. ACM Transactions on Design Automation of Electronic Systems, 2009, 14(2): 32
CrossRef Google scholar
[13]
Vannelli A. An interior point method for solving the global routing problem. In: Proceedings of the IEEE 1989 Custom Integrated Circuits Conference. 1989, 1―4
CrossRef Google scholar
[14]
Behjat L, Chiang A, Rakai L, Li J H. An effective congestion-based integer programming model for VLSI global routing. In: Proceedings of Canadian Conference on Electrical and Computer Engineering. 2008, 931―936
CrossRef Google scholar
[15]
Behjat L, Vannelli A, Rosehart W. Integer linear programming models for global routing. INFORMS Journal on Computing, 2006, 18(2): 137―150
CrossRef Google scholar
[16]
Wu T H, Davoodi A, Linderoth J T. GRIP: global routing via integer programming. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, 30(1): 72―84
CrossRef Google scholar
[17]
Han Y, Ancajas D M, Chakraborty K, Roy S. Exploring highthroughput computing paradigm for global routing. IEEE Transactions on Very Large Scale Integration Systems, 2014, 22(1): 155―167
CrossRef Google scholar
[18]
Liu G G, Chen G L, Guo W Z. DPSO based octagonal steiner tree algorithm for VLSI routing. In: Proceedings of the 15th IEEE International Conference on Advanced Computational Intellligence. 2012, 383―387
CrossRef Google scholar
[19]
Dong J, Zhu H L, Xie M, Zeng X. Graph Steiner tree construction and its routing applications. In: Proceedings of the 10th IEEE International Conference on ASIC. 2013, 1―4
[20]
Hung J H, Yeh Y K, Lin Y C, Huang H H, Hsieh T M. ECO-aware obstacle-avoiding routing tree algorithm. WSEAS Transactions on Circuits and Systems, 2010, 9(9): 567―576
[21]
Tsai C C, Kuo C C, Lee T Y. High performance buffered X-architecture zero-skew clock tree construction with via delay consideration. International Journal of Innovative Computing, Information and Control, 2011, 7(9): 5145―5161
[22]
Tsai C C, Kuo C C, Hsu F T, Lee T Y. Discharge-path-based antenn aeffect detection and fixing for X-architecture clock tree. Integration, the VLSI Journal, 2012, 45(1): 76―90
[23]
Liu G G, Guo W Z, Niu Y Z, Chen G L, Huang X. A PSO-basedtiming- driven octilinear Steiner tree algorithm for VLSI routing considering bend reduction. Soft Computing, 2014, 19(5): 1153―1169
CrossRef Google scholar
[24]
Ho T Y. A performance-driven multilevel framework for the X-based full-chip router. Integrated circuit and system design. Power and timing modeling, optimization and simulation. Springer Berlin Heidelberg, 2009: 209―218
CrossRef Google scholar
[25]
Hu Y, Jing T, Hong X, Hu X, Yan G. A routing paradigm with novel resources estimation and routability models for X-architecture based physical design. Embedded computer systems: architectures, modeling, and simulation. Springer Berlin Heidelberg, 2005: 344―353
[26]
Cao Z, Jing T, Hu Y, Shi Y, Hong X, Hu X, Yan G. DraXRouter: global routing in X-architecture with dynamic resource assignment. In: Proceedings of the 2006 Asia and South Pacific Design Automation Conference. 2006, 618―623
CrossRef Google scholar
[27]
Ho T Y. A performance-driven X-architecture router based on a novel multilevel framework. Integration, the VLSI Journal, 2009, 42: 400―408
[28]
Teig S L. The X architecture: not your father’s diagonal wiring. In: Proceedings of ACM International Workshop on System-Level Interconnect Prediction. 2002, 33―37
CrossRef Google scholar
[29]
Eberhar R C, Kennedy J. A new optimizer using particles swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. 1995, 39―43
CrossRef Google scholar
[30]
Neumann F, Witt C. Bioinspired computation in combinatorial optimization: algorithms and their computational complexity. Springer, 2010
CrossRef Google scholar
[31]
Zhang Y, Gong D W. Generating test data for both paths coverage and faults detection using genetic algorithms: multi-path case. Frontiers of Computer Science, 2014, 8(5): 726―740
CrossRef Google scholar
[32]
Rabanal P, Rodríguez I, Rubio F. An ACO-RFD hybrid method to solve NP-complete problems. Frontiers of Computer Science, 2013, 7(5): 729―744
CrossRef Google scholar
[33]
Wang Y, Cai Z X. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems. Frontiers of Computer Science, 2009, 3(1): 38―52
CrossRef Google scholar
[34]
Chen G L, Guo W Z, Chen Y Z. A PSO-based intelligent decision algorithm for VLSI floorplanning. Soft Computing, 2010, 14(12): 1329―1337
CrossRef Google scholar
[35]
Guo W Z, Liu G G, Chen G L, Peng S J. A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning. Frontiers of Computer Science, 2014, 8(2): 203―216
CrossRef Google scholar
[36]
Koh C K, Madden P H. Manhattan or non-manhattan? A study of alternative VLSI routing architectures. In: Proceedings of the 10th Great Lakes symposium on VLSI. 2000, 47―52
[37]
Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. 1997, 4104―4108
CrossRef Google scholar
[38]
Hu X, Eberhart R C, Shi Y. Swarm intelligence for permutation optimization: a case study of n-queens problem. In: Proceedings of Swarm Intelligence Symposium. 2003, 243―246
[39]
Parsopoulos K E, Halgamuge M N. Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 2002, 1(2-3): 235―306
CrossRef Google scholar
[40]
Salman A, Ahmad I, Al-Madani S. Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 2002, 26(8): 363―371
CrossRef Google scholar
[41]
Clerc M. Discrete particle swarm optimizationillustrated by the traveling salesman problem. In: Onwubolu GC, Babu BV: eds. New optimization techniques in engineering. Berlin: Springer-Verlag, 2004: 219―239.
CrossRef Google scholar
[42]
Pan Q K, Tasgetiren M F, Liang Y C. A discrete particle swarm optimization algorithm for the permutation flowshop sequecing problem with makespan criteria. In: Proceedings of Research and Development in Intelligent Systems XXIII. 2006, 19―31.
[43]
Dietzfelbinger M, Naudts B, van Hoyweghen C, Wegener I. The analysis of a recombinative hill-climber on H-IFF. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 417―423
CrossRef Google scholar
[44]
Qian C, Yu Y, Zhou Z. An analysis on recombination in multi-objec<?Pub Caret?>tive evolutionary optimization, Artificial Intelligence, 2013, 204: 99&horbar;119
CrossRef Google scholar
[45]
Alpert C, Tellez G. The importance of routing congestion analysis. In: Proceedings of the IEEE Design Automation Conference. 2010, 1&horbar;14
[46]
Shi Y H, Eberhart R C. A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation. 1998, 69&horbar;73
CrossRef Google scholar
[47]
Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240&horbar;255
CrossRef Google scholar
[48]
Lv H, Zheng J, Zhou C, Li K. The convergence analysis of genetic algorithm based on space mating. In: Proceeding of the 5th International Conference on Natural Computation. 2009, 557&horbar;562
CrossRef Google scholar
[49]
Rudolph G. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 1994, 5(1): 96&horbar;101
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(816 KB)

Accesses

Citations

Detail

Sections
Recommended

/