Irradiance regression for efficient final gathering in global illumination

Xuezhen HUANG, Xin SUN, Zhong REN, Xin TONG, Baining GUO, Kun ZHOU

PDF(653 KB)
PDF(653 KB)
Front. Comput. Sci. ›› 2015, Vol. 9 ›› Issue (3) : 456-465. DOI: 10.1007/s11704-014-4211-6
RESEARCH ARTICLE

Irradiance regression for efficient final gathering in global illumination

Author information +
History +

Abstract

Photon mapping is widely used for global illumination rendering because of its high computational efficiency. But its efficiency is still limited, mainly by the intensive sampling required in final gathering, a process that is critical for removing low frequency artifacts of density estimation. In this paper, we propose a method to predict the final gathering estimation with direct density estimation, thereby achieving high quality global illumination by photon mapping with high efficiency. We first sample the irradiance of a subset of shading points by both final gathering and direct radiance estimation. Then we use the samples as a training set to predict the final gathered irradiance of other shading points through regression. Consequently, we are able to achieve about three times overall speedup compared with straightforward final gathering in global illumination computation with the same rendering quality.

Keywords

global illumination / photon mapping / final gathering / radiance estimation / regression

Cite this article

Download citation ▾
Xuezhen HUANG, Xin SUN, Zhong REN, Xin TONG, Baining GUO, Kun ZHOU. Irradiance regression for efficient final gathering in global illumination. Front. Comput. Sci., 2015, 9(3): 456‒465 https://doi.org/10.1007/s11704-014-4211-6

References

[1]
Kajiya J T. The rendering equation. SIGGRAPH Comput. Graph., 1986, 20(4): 143-150
CrossRef Google scholar
[2]
Jensen H W. Realistic image synthesis using photon mapping. Natick, MA: A. K. Peters, Ltd., 2001
CrossRef Google scholar
[3]
Dutré P, Jensen H W, Arvo J, Bala K, Bekaert P, Marschner S, Pharr M. State of the art in monte carlo global illumination. In: Proceedings of ACM SIGGRAPH 2004 Course Notes. 2004
CrossRef Google scholar
[4]
Wald I, Mark W R, Günther J, Boulos S, Ize T, Hunt W, Parker S G, Shirley P. State of the art in ray tracing animated scenes. Computer Graphics Forum, 2007, 28(6): 1691-1722
CrossRef Google scholar
[5]
Ritschel T, Dachsbacher C, Grosch T, Kautz J. The state of the art in interactive global illumination. Computer Graphics Forum, 2012, 31(1): 160-188
CrossRef Google scholar
[6]
Lafortune E P, Willems Y D. Bi-directional path tracing. In: Proceedings of ACM SIGGRAPH. 1993, 145-153
[7]
Keller A. Instant radiosity. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97. 1997, 49-56
CrossRef Google scholar
[8]
Jensen H W, Christensen N J. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Computers & Graphics, 1995, 19(2): 215-224
CrossRef Google scholar
[9]
Ward G J, Rubinstein FM, Clear R D. A ray tracing solution for diffuse interreflection. SIGGRAPH Comput. Graph., 1988, 22(4): 85-92
CrossRef Google scholar
[10]
Ward G J, Heckbert P S. Irradiance gradients. In: Proceedings of 3rd Eurographics Workshop on Rendering. 1992, 85-98
[11]
Křivánek J, Gautron P, Ward G, Jensen H W, Christensen P H, Tabellion E. Practical global illumination with irradiance caching. In: Proceedings of ACM SIGGRAPH, 2008, 60:1-60:20
CrossRef Google scholar
[12]
Schwarzhaupt J, Jensen H W, Jarosz W. Practical hessian-based error control for irradiance caching. ACM Transactions on Graphics, 2012, 31(6): 193
CrossRef Google scholar
[13]
Spencer B, Jones M W. Into the blue: better caustics through photon relaxation. Computer Graphics Forum, 2009, 28(2): 319-328
CrossRef Google scholar
[14]
Hachisuka T, Ogaki S, Jensen HW. Progressive photon mapping. ACM Transactions on Graphics, 2008, 27(5): 130:1-130:8
[15]
Hachisuka T, Jarosz W, Bouchard G, Christensen P, Frisvad J R, Jakob W, Jensen HW, Kaschalk M, Knaus C, Selle A, Spencer B. State of the art in photon density estimation. In: Proceedings of ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12. 2012, 6:1-6:469
CrossRef Google scholar
[16]
Brouillat J, Bouville C, Loos B, Hansen C, Bouatouch K. A Bayesian monte carlo approach to global illumination. Computer Graphics Forum, 2009, 28(8): 2315-2329
CrossRef Google scholar
[17]
Marques R, Bouville C, Ribardière M, Santos L P, Bouatouch K. A spherical gaussian framework for Bayesian Monte Carlo rendering of glossy surfaces. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10): 1619-1632
CrossRef Google scholar
[18]
Sloan P P, Kautz J, Snyder J. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics, 2002, 21(3): 527-536
CrossRef Google scholar
[19]
Wang J, Xu K, Zhou K, Lin S, Hu S M, Guo B. Spherical harmonics scaling. The Visual Computer, 2006, 22: 713-720
CrossRef Google scholar
[20]
Ng R, Ramamoorthi R, Hanrahan P. All-frequency shadows using nonlinear wavelet lighting approximation. ACM Transactions on Graphics, 2003, 22(3): 376-381
CrossRef Google scholar
[21]
Tsai Y T, Shih Z C. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Transactions on Graphics, 2006, 25(3): 967-976
CrossRef Google scholar
[22]
Xu K, Jia Y T, Fu H, Hu S M, Tai C L. Spherical piecewise constant basis functions for all-frequency precomputed radiance transfer. IEEE Transaction on Visualization and Computer Graphics, 2008, 14(2): 454-467
CrossRef Google scholar
[23]
Zhang Y, Dong Z, Ma K L. Real-time volume rendering in dynamic lighting environments using precomputed photon mapping. IEEE Transaction on Visualization Computer Graphics, 2013, 19(8): 1317-1330
CrossRef Google scholar
[24]
Zhou K, Hu Y, Lin S, Guo B, Shum H Y. Precomputed shadow fields for dynamic scenes. ACM Transactions on Graphics, 2005, 24(3): 1196-1201
CrossRef Google scholar
[25]
Ren Z, Wang R, Snyder J, Zhou K, Liu X, Sun B, Sloan P P, Bao H, Peng Q, Guo B. Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Transactions on Graphics, 2006, 25(3): 977-986
CrossRef Google scholar
[26]
Sun X, Zhou K, Chen Y, Lin S, Shi J, Guo B. Interactive relighting with dynamic brdfs. ACM Transactions on Graphics, 2007, 26(3): 27
CrossRef Google scholar
[27]
Wang R, Tran J, Luebke D. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Transactions on Graphics, 2005, 24(3): 1202-1207
CrossRef Google scholar
[28]
Xu K, Gao Y, Li Y, Ju T, Hu S M. Real-time homogenous translucent material editing. Computer Graphics Forum, 2007, 26(3): 545-552
CrossRef Google scholar
[29]
Wang R, Cheslack-Postava E, Wang R, Luebke D, Chen Q, Hua W, Peng Q, Bao H. Real-time editing and relighting of homogeneous translucent materials. The Visual Computer, 2008, 24(7-9): 565-575
CrossRef Google scholar
[30]
Dachsbacher C, Stamminger M. Reflective shadow maps. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D ’05. 2005, 203-231
[31]
Dachsbacher C, Stamminger M. Splatting indirect illumination. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, I3D ’06. 2006, 93-100
[32]
Ritschel T, Grosch T, Kim M H, Seidel H P, Dachsbacher C, Kautz J. Imperfect shadow maps for efficient computation of indirect illumination. ACM Transactions on Graphics, 2008, 27(5): 129:1-129:8
[33]
Ritschel T, Engelhardt T, Grosch T, Seidel H P, Kautz J, Dachsbacher C. Micro-rendering for scalable, parallel final gathering. ACM Transactions on Graphics, 2009, 28(5): 132:1-132:8
[34]
Xu K, Cao Y P, Ma L Q, Dong Z, Wang R, Hu S M. A practical algorithm for rendering interreflections with all-frequency brdfs. ACM Transactions on Graphics, 2014, 33(1): 10:1-10:16
[35]
Ramamoorthi R, Hanrahan P. An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01. 2001, 497-500
CrossRef Google scholar
[36]
Wang R, Wang R, Zhou K, Pan M, Bao H. An efficient gpu-based approach for interactive global illumination. ACM Transactions<?Pub Caret?> on Graphics, 2009, 28(3): 91:1-91:8
[37]
Wang J, Ren P, Gong M, Snyder J, Guo B. All-frequency rendering of dynamic, spatially-varying reflectance. ACM Transactions on Graphics, 2009, 28(5): 133:1-133:10
[38]
Xu K, Sun W L, Dong Z, Zhao D Y, Wu R D, Hu S M. Anisotropic spherical gaussians. ACM Transactions on Graphics, 2013, 32(6): 209:1-209:11
[39]
Ren P, Wang J, Gong M, Lin S, Tong X, Guo B. Global illumination with radiance regression functions. ACM Transactions on Graphics, 2013, 32(4): 130:1-130:12
[40]
Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(653 KB)

Accesses

Citations

Detail

Sections
Recommended

/