SAMES: deadline-constraint scheduling in MapReduce

Xite WANG, Derong SHEN, Mei BAI, Tiezheng NIE, Yue KOU, Ge YU

PDF(748 KB)
PDF(748 KB)
Front. Comput. Sci. ›› 2015, Vol. 9 ›› Issue (1) : 128-141. DOI: 10.1007/s11704-014-4138-y
RESEARCH ARTICLE

SAMES: deadline-constraint scheduling in MapReduce

Author information +
History +

Abstract

MapReduce is a popular parallel data-processing system, and task scheduling is one of the kernel techniques in MapReduce. In many applications, users have requirements that their MapReduce jobs should be completed before specific deadlines. Hence, in this paper, a novel scheduling algorithm based on the most effective sequence (SAMES) is proposed for deadline-constraint jobs in MapReduce. First, according to the characteristics of MapReduce, we propose a novel sequence-based execution strategy for MapReduce jobs and a new concept, the effective sequence (ES). Then, we design some efficient approaches for finding ESes and choose the most effective sequence (MES) for job execution. We also propose methods for MES-updates and exception handling. Finally, we verify the effectiveness of SAMES through experiments. The experimental results show that SAMES is an efficient scheduling algorithm for deadline-constraint jobs in MapReduce.

Keywords

MapReduce / scheduling / deadline

Cite this article

Download citation ▾
Xite WANG, Derong SHEN, Mei BAI, Tiezheng NIE, Yue KOU, Ge YU. SAMES: deadline-constraint scheduling in MapReduce. Front. Comput. Sci., 2015, 9(1): 128‒141 https://doi.org/10.1007/s11704-014-4138-y

References

[1]
Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Communications of the ACM, 2008, 51(1): 107-113
CrossRef Google scholar
[2]
Jiang D, Ooi B C, Shi L, Wu S. The performance of mapreduce: an in-depth study. Proceedings of the VLDB Endowment, 2010, 3(1-2): 472-483
CrossRef Google scholar
[3]
Polo J, Carrera D, Becerra Y, Torres J. Performance-driven task coscheduling for mapreduce environments. In: Proceedings of the Network Operations and Managment Symposium (NOMS). 2010, 373-380
[4]
Kc K, Anyanwu K. Scheduling hadoop jobs to meet deadlines. In: Proceedings of 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom). 2010, 388-392
[5]
Verma A, Cherkasova L, Kumar V S, Campbell R H. Deadline-based workload management for mapreduce environments: pieces of the performance puzzle. In: Proceedings of the Network Operations and Managment Symposium (NOMS). 2012, 900-905
[6]
Sandholm T, Lai K. Dynamic proportional share scheduling in hadoop. In: Proceedings of the Job Scheduling Strategies for Parallel Processing. Berlin: Springer, 2010, 110-131
CrossRef Google scholar
[7]
Schwarzkopf M, Konwinski A, Abd-El-Malek M, Wilkes J. Omega: flexible, scalable schedulers for large compute clusters. In: Proceedings of the 8th ACM European Conference on Computer Systems, ACM. 2013, 351-364
[8]
Wolf J, Balmin A, Rajan D, Hildrum K, Khandekar R, Parekh S, Wu K L, Vernica R. Circumflex: a scheduling optimizer for mapreduce workloads with shared scans. SIGOPS, 2012, 46(1): 26-32
CrossRef Google scholar
[9]
Morton K, Balazinska M, Grossman D. Paratimer: a progress indicator for mapreduce dags. In: SIGMOD Conference’10. 2010, 507-518
[10]
Condie T, Conway N, Alvaro P, Hellerstein J M. Mapreduce online. In: Proceedings of NSDI. 2010, 313-328
[11]
Zaharia M, Elmeleegy K, Borthakur D, Shenker S, Sen Sarma J, Stoica I. Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In: Proceedings of EuroSys, ACM. 2010, 265-278
[12]
Zaharia M, Konwinski A, Joseph A D, Katz R, Stoica I. Improving mapreduce performance in heterogeneous environments. In: Proceedings of OSDI. 2008, 29-42
[13]
Verma A, Cherkasova L, Campbell R H. Aria: automatic resource inference and allocation for mapreduce environments. In: Proceedings of the 8th ACM International Conference on Autonomic Computing, ACM. 2011, 235-244
[14]
Dou A, Kalogeraki V, Gunopulos D, Mielikainen T, Tuulos V H. Misco: a mapreduce framework for mobile systems. In: Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments, ACM. 2010, 32-39
[15]
Dou A J, Kalogeraki V, Gunopulos D, Mielikainen T, Tuulos V H. Scheduling for real-time mobile mapreduce systems. In: Proceedings of the 5th ACM International Conference on Distributed Event-based System. 2011, 347-358

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(748 KB)

Accesses

Citations

Detail

Sections
Recommended

/