Memory bandwidth optimization of SpMV on GPGPUs

Chenggang Clarence YAN, Hui YU, Weizhi XU, Yingping ZHANG, Bochuan CHEN, Zhu TIAN, Yuxuan WANG, Jian YIN

PDF(525 KB)
PDF(525 KB)
Front. Comput. Sci. ›› 2015, Vol. 9 ›› Issue (3) : 431-441. DOI: 10.1007/s11704-014-4127-1
RESEARCH ARTICLE

Memory bandwidth optimization of SpMV on GPGPUs

Author information +
History +

Abstract

It is an important task to improve performance for sparse matrix vector multiplication (SpMV), and it is a difficult task because of its irregular memory access. General purpose GPU (GPGPU) provides high computing ability and substantial bandwidth that cannot be fully exploited by SpMV due to its irregularity. In this paper, we propose two novel methods to optimize the memory bandwidth for SpMV on GPGPU. First, a new storage format is proposed to exploit memory bandwidth of GPU architecture more efficiently. The new storage format can ensure that there are as many non-zeros as possible in the format which is suitable to exploit the memory bandwidth of the GPU. Second, we propose a cache blocking method to improve the performance of SpMV on GPU architecture. The sparse matrix is partitioned into sub-blocks that are stored in CSR format. With the blocking method, the corresponding part of vector x can be reused in the GPU cache, so the time to access the global memory for vector x is reduced heavily. Experiments are carried out on three GPU platforms, GeForce 9800 GX2, GeForce GTX 480, and Tesla K40. Experimental results show that both new methods can efficiently improve the utilization of GPU memory bandwidth and the performance of the GPU.

Keywords

GPGPU / performance tuning / SpMV / cache blocking / memory bandwidth

Cite this article

Download citation ▾
Chenggang Clarence YAN, Hui YU, Weizhi XU, Yingping ZHANG, Bochuan CHEN, Zhu TIAN, Yuxuan WANG, Jian YIN. Memory bandwidth optimization of SpMV on GPGPUs. Front. Comput. Sci., 2015, 9(3): 431‒441 https://doi.org/10.1007/s11704-014-4127-1

References

[1]
Xu W, Liu Z, Wu J, Ye X, Jiao S, Wang D, Song F, Fan D. Auto-tuning GEMV on many-core GPU. In: Proceedings of the 18th IEEE International Conference on Parallel and Distributed Systems. 2012, 30-36
CrossRef Google scholar
[2]
Yan C G, Zhang Y D, Xu J Z, Dai F, Li L, Dai Q H, Wu F. A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Processing letters, 2014, 21(5): 573-576
CrossRef Google scholar
[3]
Yan C G, Zhang Y D, Dai F, Zhang J, Li L, Dai Q H. Efficient parallel HEVC intra prediction on many-core processor. Electronics Letters (in press)
CrossRef Google scholar
[4]
Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F. Efficient parpallel framework for HEVC motion estimation on many-core processors. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 99: 1
[5]
Yan C G, Zhang Y D, Dai F, Li L. Highly parallel framework for HEVC motion estimation on many-core platform. In: Proceedings of Data Compression Conference, 2013, 63-72
[6]
Zhang Y D, Yan C G, Dai F, Ma Y. Efficient parallel framework for H.264/AVC deblocking filter on many-core platform. IEEE Transactions on Multimedia, 2012, 14(3): 510-524
CrossRef Google scholar
[7]
Yan C G, Dai F, Zhang Y D, Ma Y, Chen L C, Fan L J, Zheng Y S. Parallel deblocking filter for H.264/AVC implemented on Tile64 platform. In: Proceedings of the International Conference on Multimedia and Expo. 2011, 1-68
[8]
Bell N, Garland M. Implementing sparse matrix-vector multiplication on throughput-oriented processors. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. 2009, 18
CrossRef Google scholar
[9]
Nvidia C. Compute Unified Device Architecture Programming Guide. 2007
[10]
Im E. Optimizing the performance of sparse matrix-vector multiplication. Dissertation for the Doctoral Degree. Berkeley: University of California, 2000
[11]
Vuduc R W. Automatic performance tuning of sparse matrix kernels. Dissertation for the Doctoral Degree. Berkeley: University of California, 2003
[12]
Williams S W. Auto-tuning performance on multicore computers. Dissertation for the Doctoral Degree. Berkeley: University of California, 2008
[13]
Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J. Optimization of sparse matrix-vector multiplication on emerging multicore platforms. Parallel Computing, 2009, 35(3): 178-194
CrossRef Google scholar
[14]
Bolz J, Farmer I, Grinspun E, Schröoder P. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Transactions on Graphics, 2003, 22(3): 917-924
CrossRef Google scholar
[15]
Sengupta S, Harris M, Zhang Y, Owens J D. Scan primitives for GPU computing. In: Proceedings of Graphics Hardware. 2007, 97-106
[16]
Bell N, Garland M. Efficient Sparse Matrix-vector Multiplication on Cuda. Technical Report, NVIDIA Technical Report NVR-2008-004. 2008
[17]
Baskaran M M, Bordawekar R. Optimizing Sparse Matrix-vector Multiplication on GPUs Using Compile-time and Run-time Strategies. IBM Reserach Report RC24704 (W0812-047). 2008.
[18]
Cevahir A, Nukada A, Matsuoka S. Fast conjugate gradients with multiple GPUs. In: Proceedings of the Computational Science. 2009, 893-903.
CrossRef Google scholar
[19]
Vázquez F, Garzón E M, Martínez J A, Fernández J J. The sparse matrix vector product on GPUs. In: Proceedings of the 2009 International Conference on Computational and Mathematical Methods in Science and Engineering. 2009, 1081-1092
[20]
Monakov A, Lokhmotov A, Avetisyan A. Automatically tuning sparse matrix-vector multiplication for GPU architectures. In: Proceedings of the High Performance Embedded Architectures and Compilers. 2010, 111-125
CrossRef Google scholar
[21]
Choi J W, Singh A, Vuduc R W. Model-driven autotuning of sparse matrix-vector multiply on GPUs. ACM Sigplan Notices, 2010, 45(5): 115-126
CrossRef Google scholar
[22]
Guo P, Wang L. Auto-tuning cuda parameters for sparse matrixvector multiplication on GPUs. In: Proceedings of the 2010 International Conference on Computational and Information Sciences (ICCIS). 2010, 1154-1157
CrossRef Google scholar
[23]
Yang X, Parthasarathy S, Sadayappan P. Fast sparse matrix-vector multiplication on GPUs: implications for graph mining. Proceedings of the VLDB Endowment, 2011, 4(4): 231-242
CrossRef Google scholar
[24]
Xu W, Zhang H, Jiao S, Wang D, Song F, Liu Z. Optimizing sparse matrix vector multiplication using cache blocking method on fermi GPU. In: Proceedings of the 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD). 2012, 231-235
CrossRef Google scholar
[25]
Buluc A, Williams S, Oliker L, Demmel J. Reduced-bandwidth multithreaded algorithms for sparse matrix-vector multiplication. In: Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium. 2011, 721-733
[26]
Buluç A, Fineman J T, Frigo M, Gilbert J R, Leiserson C E. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. In: Proceedings of the 21st annual symposium on Parallelism in algorithms and architectures. 2009, 233-244
CrossRef Google scholar
[27]
Kourtis K, Karakasis V, Goumas G, Koziris N. Csx: an extended compression format for spmv on shared memory systems. ACM SIGPLAN Notices, 2011, 46(8): 247-256
CrossRef Google scholar
[28]
Willcock J, Lumsdaine A. Accelerating sparse matrix computations via data compression. In: Proceedings of the 20th annual international conference on Supercomputing. 2006, 307-316
CrossRef Google scholar
[29]
Xu WZ, Liu Z Y, Fan D R, Jiao S, Ye X C, Song F L, Yan C. G Accelerating sparse matrix vector multiplication on many-core GPUs. World Academy of Science, Engineering and Technology, 2012, 6(1): 71-78

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(525 KB)

Accesses

Citations

Detail

Sections
Recommended

/