Interpolation oriented parallel communication to optimize coupling in earth system modeling

Yingsheng JI, Yingzhuo ZHANG, Guangwen YANG

PDF(708 KB)
PDF(708 KB)
Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (4) : 693-708. DOI: 10.1007/s11704-014-3408-z
RESEARCH ARTICLE

Interpolation oriented parallel communication to optimize coupling in earth system modeling

Author information +
History +

Abstract

Complicated global climate problems trigger researchers from different scientific disciplines to link multiphysics simulations called models for integrated modeling of climate changes by using a software framework called earth system modeling (ESM). As its critical component, coupler is in charge of connections and interactions among models. With the advance of next-generation models, greater data transfer volume and higher coupling frequency are expected to put heavy performance burden on coupler. High efficient coupling techniques are required. In this paper, we propose the sub-domain mapping method to improve the parallel coupling consisted of data transfer and data transformation. By using one specific interpolation oriented communication routing, the communication operations that are originally decentralized in various steps can be combined together for execution. This can reduce the redundant communications and the entailed synchronization costs. The tests on the Tianhe-1A (TH-1A) supercomputer show that our method can achieve 1.1 to 4.9 fold performance improvements. We also present further optimization solution for the multi-interpolation cases. The test results show that our method can achieve up to 3.4 fold speedup over the original coupling execution of the current climate system.

Keywords

coupler / communication optimization / coupling performance / ESM

Cite this article

Download citation ▾
Yingsheng JI, Yingzhuo ZHANG, Guangwen YANG. Interpolation oriented parallel communication to optimize coupling in earth system modeling. Front. Comput. Sci., 2014, 8(4): 693‒708 https://doi.org/10.1007/s11704-014-3408-z

References

[1]
Dunlap R, Rugaber S, Mark L. A feature model of coupling technologies for earth system models. Computers & Geosciences, 2013, 53: 13-20
CrossRef Google scholar
[2]
Valcke S, Balaji V, Craig A, Deluca C, Dunlap R, Ford R W, Jacob R, Larson J, O’Kuinghttons R, Riley G D, Vertenstein M. Coupling technologies for earth system modelling. Geoscientific Model Development Discussions, 2012, 5(3): 1987-2006
CrossRef Google scholar
[3]
Bao Q, Lin P, Zhou T, Liu Y, Yu Y, Wu G, He B, He J, Li L, Li J, Li Y, Liu H, Qiao F, Song Z, Wang B, Wang J, Wang P, Wang X, Wang Z, Wu B, Wu T, Xu Y, Yu H, Zhao W, Zheng W, Zhou L. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Advances in Atmospheric Sciences, 2013, 30: 561-576
CrossRef Google scholar
[4]
Craig A P, Jacob R, Kauffman B, Bettge T, Larson J, Ong E, Ding C, He Y. CPL6: the new extensible, high performance parallel coupler for the community climate system model. International Journal of High Performance Computing Applications, 2005, 19(3): 309-327
CrossRef Google scholar
[5]
Redler R, Valcke S, Ritzdorf H. OASIS4-a coupling software for next generation earth system modelling. Geoscientific Model Development, 2010, 3(1): 87-104
CrossRef Google scholar
[6]
Jacob R, Larson J, Ong E. M × N communication and parallel interpolation in community climate system model version 3 using the model coupling toolkit. International Journal of High Performance Computing Applications, 2005, 19(3): 293-307
CrossRef Google scholar
[7]
Collins W D, Bitz C M, Blackmon M L, Bonan G B, Bretherton C S, Carton J A, Chang P, Doney S C, Hack J J, Henderson T B, Kiehl J T, Large W G, McKenna D S, Santer B D, Smith R D. The community climate system model version 3. Journal of Climate, 2006, 19(11): 2122-2143
CrossRef Google scholar
[8]
Yang X J, Liao X K, Lu K, Hu Q F, Song J Q, Su J S. The TianHe-1A supercomputer: its hardware and software. Journal of Computer Science and Technology, 2011, 26(3): 344-351
CrossRef Google scholar
[9]
Gent P R, Danabasoglu G, Donner L J, Holland M M, Hunke M M, Hunke E C, Jayne S R, Lawrence D M, Neale R B, Rasch P J, Vertenstein M, Worley P H, Yang Z L, Zhang M. The community climate system model version 4. Journal of Climate, 2011, 24(19): 4973-4991
CrossRef Google scholar
[10]
Dennis J M, Vertenstein M, Worley P H, Mirin A A, Craig A P, Jacob R, Mickelson S. Computational performance of ultra-high-resolution capability in the community earth system model. International Journal of High Performance Computing Applications, 2012, 26(1): 5-16
CrossRef Google scholar
[11]
Vertenstein M, Craig T, Middleton A, Feddema D, Fischer C. Community earth system model 1.0.4 User’s Guide. 2011, 1-145
[12]
Craig A P, Vertenstein M, Jacob R. A new flexible coupler for earth system modeling developed for community climate system model 4 and community earth system model 1. International Journal of High Performance Computing Applications, 2012, 26(1): 31-42
CrossRef Google scholar
[13]
Valcke S. The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev. Discuss, 5: 2139-2178
[14]
Hinton A, Kwiatkowska M, Norman G, Parker D. PRISM: a tool for automatic verification of probabilistic systems. Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin Heidelberg, 2006: 441-444
[15]
Larson J, Jacob R, Ong E. Themodel coupling toolkit: a new Fortran90 toolkit for building multiphysics parallel coupled models. International Journal of High Performance Computing Applications, 2005, 19(3): 277-292
CrossRef Google scholar
[16]
Balaji V. The FMS manual: a developer’s guide to the GFDL flexible modeling system. 2002
[17]
Balaji V, Anderson J, Held I, Winton M, Malyshev S, Stouffer R. The exchange grid: a mechanism for data exchange between earth system components on independent grids. In: Proceedings of the 2005 International Conference on Parallel Computational Fluid Dynamics. 2006, 1-18
CrossRef Google scholar
[18]
Hill C, DeLuca C, Suarez M, Silva A D. The architecture of the earth system modeling framework. Computing in Science & Engineering, 2004, 6(1): 18-28
CrossRef Google scholar
[19]
Collins N, Theurich G, Deluca C, Suarez M, Trayanov A, Balaji V, Li P, Yang W, Hill C, Silva A D. Design and implementation of components in the earth system modeling framework. International Journal of High Performance Computing Applications, 2005, 19(3): 341-350
CrossRef Google scholar
[20]
Yoshimura H, Yukimoto S. Development of a simple coupler (Scup) for earth system modeling. Pap Meteor Geophys, 2008, 59: 19-29
CrossRef Google scholar
[21]
Arakawa T, Yoshimura H, Saito F, Ogochi K. Data exchange algorithm and software design of KAKUSHIN coupler Jcup. Procedia Computer Science, 2011, 4: 1516-1525
CrossRef Google scholar
[22]
Ford R W, Riley G D, Bane M K, Armstrong C W, Freeman T L. GCF: a general coupling framework. Concurrency and Computation: Practice and Experience, 2006, 18(2): 163-181
CrossRef Google scholar
[23]
Armstrong C W, Ford R W, Riley G D. Coupling integrated earth system model components with bfg2. Concurrency and Computation: Practice and Experience, 2009, 21(6): 767-791
CrossRef Google scholar
[24]
Balaji V, Boville B, Cheung S, Clune T, Collins N, Craig T, Cruz C, Silva A D, Deluca C, Fainchtein R D, Eaton B, Hallberg B, Handerson T, Hill C, Iredell M, Jacob R, Jones P, Kluzek E, Kauffman B, Larson J, Li P, Liu F, Michalakes J, Murphy S, Neckels D, Kuinghttons R O, Oehmke B, Panaccione C, Rosinski J, Sawyer W, Sch wab E, Smithline S, Spector W, Stark D, Suarez M, Swift S, Theurich G, Trayanoy A, Vasquez S, Wolfe J, Yang W, Young M, Zaslavsky L. ESMF User Guide Version 3.1. Earth System Modeling Framework, 2009

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(708 KB)

Accesses

Citations

Detail

Sections
Recommended

/