Linear discriminant analysis with worst between-class separation and average within-class compactness

Leilei YANG, Songcan CHEN

PDF(413 KB)
PDF(413 KB)
Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (5) : 785-792. DOI: 10.1007/s11704-014-3337-x
RESEARCH ARTICLE

Linear discriminant analysis with worst between-class separation and average within-class compactness

Author information +
History +

Abstract

Linear discriminant analysis (LDA) is one of the most popular supervised dimensionality reduction (DR) techniques and obtains discriminant projections by maximizing the ratio of average-case between-class scatter to averagecase within-class scatter. Two recent discriminant analysis algorithms (DAS), minimal distance maximization (MDM) and worst-case LDA (WLDA), get projections by optimizing worst-case scatters. In this paper, we develop a new LDA framework called LDA with worst between-class separation and average within-class compactness (WSAC) by maximizing the ratio of worst-case between-class scatter to averagecase within-class scatter. This can be achieved by relaxing the trace ratio optimization to a distance metric learning problem. Comparative experiments demonstrate its effectiveness. In addition, DA counterparts using the local geometry of data and the kernel trick can likewise be embedded into our framework and be solved in the same way.

Keywords

dimensionality reduction / linear discriminant analysis / the worst separation / the average compactness

Cite this article

Download citation ▾
Leilei YANG, Songcan CHEN. Linear discriminant analysis with worst between-class separation and average within-class compactness. Front. Comput. Sci., 2014, 8(5): 785‒792 https://doi.org/10.1007/s11704-014-3337-x

References

[1]
Fukunaga K. Statistical Pattern Recognition. Academic Press, 1990
[2]
Duda R. Hart P. Stork D. Pattern Classification. 2nd ed. New York: John Wiley & Sons, Inc., 2001
[3]
Yang B. Chen S. Wu X. A structurally motivated framework for discriminant analysis. Pattern Analysis and Application, 2011, 14(4): 349−367
CrossRef Google scholar
[4]
Jae H. Nojun K. Generalization of linear discriminant analysis using L p-norm. Pattern Recognition Letters, 2013, 34(6): 679−685
CrossRef Google scholar
[5]
Ching W. Chu D. Liao L. Wang X. Regularized orthogonal linear discriminant analysis. Pattern Recognition, 2012, 45(7): 2719−2732
CrossRef Google scholar
[6]
Li H. Jiang T. Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Transaction on Neural Networks, 2006, 17(1): 157−165
CrossRef Google scholar
[7]
Nenadic Z. Information discriminant analysis: feature extraction with an information-theoretic objective. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1394−1407
CrossRef Google scholar
[8]
Zhu M. Martinez A. Subclass discriminant analysis. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2006, 28(8): 1274−1286
[9]
Gao Q. Liu J. Zhang H. Hou J. Yang X. Enhanced fisher discriminant criterion for image recognition. Pattern Recognition, 2012, 45(10): 3717−3724
CrossRef Google scholar
[10]
Cai D. He X. Kun Z. Han J. Bao H. Local sensitive discriminant analysis. In Proceedings of the international joint conference on artificial intelligence. 2007, 141−146
[11]
Fan Z. Xu Y. Zhang D. Local linear discriminant analysis framework using sample neighbors. IEEE Transaction on Neural Networks, 2011, 22(7): 1119−1132
CrossRef Google scholar
[12]
Xu B. Huang K. Liu C. Dimensionality reduction by minimal distance maximization. In: Proceedings of 20th International Conference on Pattern Recognition, 2010, 569−572
[13]
Zhang Y. Yeung D. Worst-case linear discriminant analysis. In: Proceedings of Advances in Neural Information Processing Systems. 2010, 2568−2576
[14]
Ying Y. Li P. Distance metric learning with eigenvalue optimization. Journal of Machine Learning Research, 2012, 13: 1−26
[15]
Overton M. Womersley R. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math Programming, 1993, 62(2): 321−357
CrossRef Google scholar
[16]
Overton M. On minimizing the maximum eigenvalue of a symmetric matrix. SIAM Journal on Matrix Analysis and Applications, 1988, 9(2): 256−268
CrossRef Google scholar
[17]
Zhang Y. Yeung D. Semi-supervised generalized discriminant analysis. IEEE Transactions on Neural Network, 2011, 22(8): 1207−1217
CrossRef Google scholar
[18]
Mika S. Ratsch G. Weston J. Scholkopf B. Smola A. Muller K. Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 623−628
CrossRef Google scholar
[19]
Duin R. Loog M. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 732−739
CrossRef Google scholar
[20]
Frank A. Asuncion A. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
[21]
Belhumeur P. Hespanha J. Kriegman D. Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711−720
CrossRef Google scholar
[22]
Martinez A. Benavente R. The AR-face database. Technical Report 24, CVC, 1998.
[23]
Nene S. Nayar S. Murase H. Columbia Object Image Library (COIL-20). Technical Report005, CUCS, 1996. http://www1.cs.columbia.edu/CAVE/softw are/softlib/coil-20.php

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(413 KB)

Accesses

Citations

Detail

Sections
Recommended

/