Known-key distinguishers on type-1 Feistel scheme and near-collision attacks on its hashing modes
Le DONG , Wenling WU , Shuang WU , Jian ZOU
Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (3) : 513 -525.
Known-key distinguishers on type-1 Feistel scheme and near-collision attacks on its hashing modes
We present some known-key distinguishers for a type-1 Feistel scheme with a permutation as the round function. To be more specific, the 29-round known-key truncated differential distinguishers are given for the 256-bit type-1 Feistel scheme with an SP (substitution-permutation) round function by using the rebound attack, where the S–boxes have perfect differential and linear properties and the linear diffusion layer has a maximum branch number. For two 128-bit versions, the distinguishers can be applied on 25-round structures. Based on these distinguishers, we construct near-collision attacks on these schemes with MMO (Matyas-Meyer-Oseas) and MP (Miyaguchi-Preneel) hashing modes, and propose the 26-round and 22-round near-collision attacks for two 256-bit schemes and two 128-bit schemes, respectively. We apply the near-collision attack on MAME and obtain a 26-round near-collision attack. Using the algebraic degree and some integral properties, we prove the correctness of the 31-round known-key integral distinguisher proposed by Sasaki et al. We show that if the round function is a permutation, the integral distinguisher is suitable for a type-1 Feistel scheme of any size.
known-key / block cipher / generalized Feistel scheme / type-1 / rebound attack / integral distinguisher / algebraic degree
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |