ECG beat classification using particle swarm optimization and support vector machine

Ali KHAZAEE , A. E. ZADEH

Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (2) : 217 -231.

PDF (563KB)
Front. Comput. Sci. ›› 2014, Vol. 8 ›› Issue (2) : 217 -231. DOI: 10.1007/s11704-014-2398-1
RESEARCH ARTICLE

ECG beat classification using particle swarm optimization and support vector machine

Author information +
History +
PDF (563KB)

Abstract

In this paper, we propose a novel ECG arrhythmia classification method using power spectral-based features and support vector machine (SVM) classifier. The method extracts electrocardiogram’s spectral and three timing interval features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. The proposed approach optimizes the relevant parameters of SVM classifier through an intelligent algorithm using particle swarm optimization (PSO). These parameters are: Gaussian radial basis function (GRBF) kernel parameter σ and C penalty parameter of SVM classifier. ECG records from the MIT-BIH arrhythmia database are selected as test data. It is observed that the proposed power spectral-based hybrid particle swarm optimization-support vector machine (SVMPSO) classification method offers significantly improved performance over the SVM which has constant and manually extracted parameter.

Keywords

ECG arrhythmia classification / SVM / PSO / optimization / PSD

Cite this article

Download citation ▾
Ali KHAZAEE, A. E. ZADEH. ECG beat classification using particle swarm optimization and support vector machine. Front. Comput. Sci., 2014, 8(2): 217-231 DOI:10.1007/s11704-014-2398-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CliffordG D, AzuajeF, McSharryP. Advanced Methods and Tools for ECG Data Analysis. Artech House London, 2006

[2]

SandoeE, SigurdB. Arrhythmia: A Guide to Clinical Electrocar Diology. Publishing Partners, 1991

[3]

ShyuL Y, WuY H, HuW. Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1269-1273

[4]

InanO T, GiovangrandiL, KovacsG T. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2507-2515

[5]

EbrahimzadehA, KhazaeeA. Detection of premature ventricular contractions using MLP neural networks: a comparative study. Measurement, 2010, 43(1): 103-112

[6]

ZadehA E, KhazaeeA. High efficient system for automatic classification of the electrocardiogram beats. Annals of Biomedical Engineering, 2011, 39(3): 996-1011

[7]

InceT, KiranyazS, GabboujM. A generic and robust system for automated patient-specific classification of ECG signals. IEEE Transactions on Biomedical Engineering, 2009, 56(5): 1415-1426

[8]

KhazaeeA, EbrahimzadehA. Heart arrhythmia detection using support vector machines. Intelligent Automation & Soft Computing, 2013, 19(1): 1-9

[9]

LinC H. Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Computers &Mathematics with Applications, 2008, 55(4): 680-690

[10]

ZeraatkarE, KermaniS, MehridehnaviA, AminzadehA, ZeraatkarE, SaneiH. Arrhythmia detection based on morphological and timefrequency features of t-wave in electrocardiogram. Journal of Medical Signals and Sensors, 2011, 1(2): 99-106

[11]

KaurM, AroraA. Classification of ECG signals using LDA with factor analysis method as feature reduction technique. Journal of Medical Engineering & Technology, 2012, 36(8): 411-420

[12]

Derya ÜbeyliE. Recurrent neural networks employing lyapunov exponents for analysis of ECG signals. Expert Systems with Applications, 2010, 37(2): 1192-1199

[13]

De ChazalP, O’DwyerM, ReillyR B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 2004, 51(7): 1196-1206

[14]

YeC, BhagavatulaV, CoimbraM. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Transactions on Biomedical Engineering, 2004, 59(10): 2930-2941

[15]

LlamedoM, MartnezJ P. Án automatic patient-adapted ECG heartbeat classifier allowing expert assistance. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2312-2320

[16]

AndreãoR V, DorizziB, BoudyJ. ECG signal analysis through hidden markov models. IEEE Transactions on Biomedical Engineering, 2006, 53(8): 1541-1549

[17]

MartisR J, ChakrabortyC, RayA K. A two-stage mechanism for registration and classification of ECG using gaussian mixture model. Pattern Recognition, 2009, 42(11): 2979-2988

[18]

MitraS, MitraM, ChaudhuriB B. A rough-set-based inference engine for ECG classification. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6): 2198-2206

[19]

Chazald P, ReillyR B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2535-2543

[20]

OsowskiS, MarkiewiczT, HoaiL T. Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement, 2008, 41(6): 610-617

[21]

VapnikV N. Statistical Learning Theory. Wiley, 1998

[22]

VaseghiS V. Advanced Digital Signal Processing and Noise Reduction. Wiley, 2008

[23]

WelchP. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 1967, 15(2): 70-73

[24]

PercivalD, WaldenA. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. New York: Cambridge University Press, 1993

[25]

BurgesC J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167

[26]

CortesC, VapnikV. Support-vector networks. Machine Learning, 1995, 20(3): 273-297

[27]

MullerK R, MikaS, RatschG, TsudaK, ScholkopfB. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201

[28]

EberhartR, KennedyJ. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science. 1995, 39-43

[29]

ShiY, EberhartR C. Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation. 1999, 1945-1950

[30]

MoodyG B, MarkR G. MIT-BIH arrhythmia database,

[31]

MoodyG B, MarkR G. The impact of the mit-bih arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50

[32]

SpechtD F. Probabilistic neural networks. Neural Networks, 1990, 3(1): 109-118

[33]

LuanF, ZhangX, ZhangH, ZhangR, LiuM, HuZ, FanB. QSPR study of permeability coefficients through low-density polyethylene based on radial basis function neural networks and the heuristic method. Computational materials science, 2006, 37(4): 454-461

[34]

RumelhartD E, McClellandJ L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 1986

[35]

RiedmillerM, BraunH. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the 1993 IEEE International Conference on Neural Networks. 1993, 586-591

[36]

HaganM T, MenhajM B. Training feedforward networks with the marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (563KB)

1460

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/